首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   50篇
  465篇
  2023年   3篇
  2022年   3篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   19篇
  2013年   10篇
  2012年   12篇
  2011年   17篇
  2010年   8篇
  2009年   13篇
  2008年   8篇
  2007年   24篇
  2006年   11篇
  2005年   12篇
  2004年   18篇
  2003年   13篇
  2002年   13篇
  2001年   12篇
  2000年   17篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   9篇
  1995年   11篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   8篇
  1990年   8篇
  1989年   13篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1946年   4篇
  1936年   3篇
  1925年   2篇
  1922年   2篇
排序方式: 共有465条查询结果,搜索用时 15 毫秒
61.
62.
The aim of this review is to present an outline of the physiological perspectives of beneficial antioxidant production in fruit. The drive to enhance the consumption of fruit and vegetables in the human diet is linked with positive effects of beneficial antioxidants impacting on health promotion. We briefly outline our physiological understanding of environmental processes which induce the production of reactive oxygen species and how antioxidants prevent plant cellular damage. More specifically, we describe the impact that environmental stresses, such as drought and radiation, have on the production of endogenous antioxidants and how these stresses can be incorporated into novel experimental crop growing systems to achieve high antioxidant concentrations in fruits. This includes in particular the use of irrigation application techniques and enhanced light reflectance to increase the concentrations of bioactive compounds such as ellagic acid and ascorbic acid.  相似文献   
63.
Plant protein improvement by genetic engineering: use of synthetic genes   总被引:1,自引:0,他引:1  
Methods now exist to construct genes coding for synthetic proteins enriched in essential amino acid content. The production of these synthetic proteins in potato tubers can improve the nutritive value of the potato and increase its importance as a basic food crop.  相似文献   
64.
Poor glucose tolerance may be an under-researched contributory factor in the high (10% to 20%) pre-weaning mortality rate observed in pigs. Insulin resistance commences at around week 12 of gestation in the sow, although there are conflicting reports in the literature about the extent to which insulin resistance is modulated by maternal diet. The aim of the study was to determine the effects of supplementing the maternal diet with different dietary oils during either the first half or the second half of gestation on the glucose tolerance of the sow. Sows were offered the control (C: n = 5) diet as pellets or the C diet plus 10% extra energy (n = 16 per group) derived from either: (i) extra pellets; (ii) palm oil; (iii) olive oil; (iv) sunflower oil; or (v) fish oil. Experimental diets were fed during either the first (G1) or second (G2) half of gestation. A glucose tolerance test (GTT) was conducted on day 108 of gestation by administering 0.5 g/kg glucose i.v. Blood samples were taken every 5 to 10 min for 90 min post administration. The change in body weight and backfat thickness during gestation was similar but both type and timing of dietary supplementation influenced litter size and weight. With the exception of the sunflower oil group, supplementing the maternal diet in G1 resulted in larger and heavier litters, particularly in mothers offered palm oil. Basal blood glucose concentrations tended to be more elevated in G1 than G2 groups, whilst plasma insulin concentrations were similar. Following a GTT, the adjusted area under the curve was greater in G1 compared to G2 sows, despite no differences in glucose clearance. Maternal diet appeared to influence the relationship between glucose curve characteristics following a GTT and litter outcome. In conclusion, the degree of insulin sensitivity can be altered by both the period during which maternal nutritional supplementation is offered and the fatty acid profile of the diet.  相似文献   
65.
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower‐quality litter, but these correlations were influenced by a single, N‐fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.  相似文献   
66.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   
67.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
68.
Eutrophication caused by phosphorus (P) leads to water quality problems in aquatic systems, particularly freshwaters, worldwide. Processing of nutrients in shallow habitats removes P from water naturally and periphyton influences P removal from the water column in flowing waters and wetlands. Periphyton plays several roles in removing P from the water column, including P uptake and deposition, filtering particulate P from the water, and attenuating flow, which decreases advective transport of particulate and dissolved P from sediments. Furthermore, periphyton photosynthesis locally increases pH by up to 1 unit, which can lead to increased precipitation of calcium phosphate, concurrent deposition of carbonate-phosphate complexes, and long-term burial of P. Actively photosynthesizing periphyton can cause super-saturated O2 concentrations near the sediment surface encouraging deposition of metal phosphates. However, anoxia associated with periphyton respiration at night may offset this effect. Linking the small-scale functional role of periphyton to ecosystem-level P retention will require more detailed studies in a variety of ecosystems or large mesocosms. A case study from the Everglades illustrates the importance of considering the role of periphyton in P removal from wetlands. In general, periphyton tends to increase P retention and deposition. In pilot-scale constructed periphyton-dominated wetlands in South Florida, about half of the inflowing total P was removed.  相似文献   
69.
70.
The effects of water activity (aw, 0.955 to 0.970), pH (4.75 to 5.75), and storage time (up to 60 days) on toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes were studied by using factorial design experiments and most-probable-number methodology. Samples were inoculated with 10(3), 10(4), or 10(5) spores of a mixture of five type A and five proteolytic type B strains, incubated at 25 degrees C, and analyzed for toxin production. Toxin was produced at pH levels of greater than or equal to 4.75 when the aw was greater than or equal to 0.970, pH greater than 5.25 when the aw was 0.965, and pH greater than or equal to 5.75 at an aw of 0.960. No toxin was detected when the aw was 0.955. The probability of toxigenesis was significantly affected (P less than 0.0001) by storage time, aw, pH, and the interactions aw.pH and aw.storage time. The response to a decrease in pH was linear, while the response to a decrease in aw was curvilinear. Using multiple linear regression, equations were derived which could predict the length of time until toxin production and the probability of toxigenesis by a single spore under defined conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号