首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
  54篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
Territorial defense of nonbreeding female Neolamprologus tetracanthus, a shrimp-eating Tanganyikan cichlid, was investigated. Females defended territories (=home ranges, ca. 1m across) against a variety of intruding fishes. Conspecific females were usually attacked outside the territories, heterospecific benthivores (shrimp eaters) and omnivores near the border of the territories, and piscivores, algae and detritus feeders, and herbivores inside the territories. Females used some parts of the sandy substrate in the territories for foraging (foraging areas). Territorial defense prevented most of the conspecific females and benthivores from intruding into the foraging areas. In omnivores, piscivores, and algae and detritus feeders, about half the intruders were repelled from the foraging areas, although herbivores were infrequently repelled in the areas. Soon after removal of the resident females, many food competitors invaded the foraging areas and eagerly devoured prey, suggesting that the territories are maintained for food resource protection from these competitors. Females are likely to discriminate intruding fishes and change their territorial defense primarily on the basis of the degree of dietary overlap, resulting in monofunctional serial territories.  相似文献   
42.
There are two approaches to the discovery of enzyme mimics, that is identifying molecules that are able to bind substrate(s) and then catalyze reactions. The first approach, often inspired by enzymes themselves, utilises chemical knowledge and experience to design the catalyst. The other approach is to create a library and select the best host of a transition state analogue of the required reaction.  相似文献   
43.
44.
45.
46.
Endometrial cancer (EC) is the most common type of uterine cancer. A dualistic model of endometrial tumorigenesis serves as a useful way of categorizing these cancers in terms of both etiology and clinical behavior. There are two types of EC: type I and type II. Type I is so-called estrogen-dependent, and appears mostly in pre- and perimenopausal women, it is well differentiated and therefore has a better prognosis. Type II EC is estrogen-independent, diagnosed mostly in postmenopausal women, thin and fertile women, or in women with normal menstrual cycles. It is aggressive and has a worse prognosis than type I. The aim of this study was to evaluate the relationship between the pretreatment serum levels of VEGF and VEGF-C and the outcome of EC patients. A total of 98 patients treated between 1999 and 2003 were included in this study. Circulating VEGF and VEGF-C levels were determined using ELISA kits. VEGF levels among the 76 patients with type I, and the 22 patients with type II EC were significantly higher than those found in the healthy control subjects (p?相似文献   
47.
We describe here a case of homologous introns containing homologous open reading frames (ORFs) that are inserted at the same site in the large subunit (LSU) rRNA gene of different organelles in distantly related organisms. We show that the chloroplast LSU rRNA gene of the green alga Chlamydomonas pallidostigmatica contains a group I intron (CpLSU.2) encoding a site-specific endonuclease (I-CpaI). This intron is inserted at the identical site (corresponding to position 1931-1932 of the Escherichia coli 23S rRNA sequence) as a group I intron (AcLSU.m1) in the mitochondrial LSU rRNA gene of the amoeboid protozoon Acanthamoeba castellanii. The CpLSU.2 intron displays a remarkable degree of nucleotide similarity in both primary sequence and secondary structure to the AcLSU.m1 intron; moreover, the Acanthamoeba intron contains an ORF in the same location within its secondary structure as the CpLSU.2 ORF and shares with it a strikingly high level of amino acid similarity (65%; 42% identity). A comprehensive survey of intron distribution at site 1931 of the chloroplast LSU rRNA gene reveals a rather restricted occurrence within the polyphyletic genus Chlamydomonas, with no evidence of this intron among a number of non- Chlamydomonad green algae surveyed, nor in land plants. A parallel survey of homologues of a previously described and similar intron/ORF pair (C. reinhardtii chloroplast CrLSU/A. castellanii mitochondrial AcLSU.m3) also shows a restricted occurrence of this intron (site 2593) among chloroplasts, although the intron distribution is somewhat broader than that observed at site 1931, with site-2593 introns appearing in several green algal branches outside of the Chlamydomonas lineage. The available data, while not definitive, are most consistent with a relatively recent horizontal transfer of both site-1931 and site- 2593 introns (and their contained ORFs) between the chloroplast of a Chlamydomonas-type organism and the mitochondrion of an Acanthamoeba- like organism, probably in the direction chloroplast to mitochondrion. The data also suggest that both introns could have been acquired in a single event.   相似文献   
48.
The spores of Anabaena doliolum formed in light (light spores)and after transfer to darkness (dark spores) are biochemicallydifferent in that the light spores contain chlorophyll a andphycocyanin, while dark spores seem to lack them. The apparentbiosyntheses accompanying dark-spore germination seem to proceedin the following order: RNA, chlorophyll a, phycocyanin andDNA. Results of chloramphenicol treatment indicate that proteinsynthesis precedes RNA synthesis. The biosynthetic events followingRNA synthesis show a requirement for light.  相似文献   
49.
50.

Introduction

Females having a longer telomere and lifespan than males have been documented in many animals. Such linkage however has never been reported in fish. Progressive shortening of telomere length is an important aging mechanism. Mounting in vitro evidence has shown that telomere shortening beyond a critical length triggered replicative senescence or cell death. Estrogen has been postulated as a key factor contributing to maintenance of telomere and sex-dependent longevity in animals. This postulation remains unproven due to the lack of a suitable animal system for testing. Here, we introduce a teleost model, the Japanese medaka Oryzias latipes, which shows promise for research into the molecular mechanism(s) controlling sex difference in aging.

Results

Using the medaka, we demonstrate for the first time in teleost that (i) sex differences (female?>?male) in telomere length and longevity also exist in fish, and (ii) a natural, ‘menopause’-like decline of plasma estrogen was evident in females during aging. Estrogen levels significantly correlated with telomerase activity as well as telomere length in female organs (not in males), suggesting estrogen could modulate telomere length via telomerase activation in a sex -specific manner. A hypothetical in vivo ‘critical’ terminal restriction fragment (TRF, representing telomere) length of approximately 4 kb was deduced in medaka liver for prediction of organismal mortality, which is highly comparable with that for human cells. An age conversion model was also established to enable age translation between medaka (in months) and human (in years). These novel tools are useful for future research on comparative biology of aging using medaka.

Conclusion

The striking similarity in estrogen profile between aging female O. latipes and women enables studying the influence of “postmenopausal” decline of estrogen on telomere and longevity without the need of invasive ovariectomy. Medaka fish is advantageous for studying the direct effect of increased estrogen on telomere length and longevity without the breast cancer complications reported in rodents. The findings strongly support the notion that O. latipes is a unique non-mammalian model for validation of estrogenic influence on telomere and longevity in vertebrates. This laboratory model fish is of potential significance for deciphering the ostensibly conserved mechanism(s) of sex-associated longevity in vertebrates.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号