首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4134篇
  免费   352篇
  国内免费   319篇
  2024年   16篇
  2023年   93篇
  2022年   143篇
  2021年   228篇
  2020年   142篇
  2019年   172篇
  2018年   189篇
  2017年   123篇
  2016年   186篇
  2015年   234篇
  2014年   286篇
  2013年   319篇
  2012年   373篇
  2011年   346篇
  2010年   195篇
  2009年   182篇
  2008年   233篇
  2007年   189篇
  2006年   175篇
  2005年   135篇
  2004年   122篇
  2003年   120篇
  2002年   124篇
  2001年   50篇
  2000年   58篇
  1999年   51篇
  1998年   27篇
  1997年   27篇
  1996年   27篇
  1995年   12篇
  1994年   20篇
  1993年   11篇
  1992年   22篇
  1991年   25篇
  1990年   17篇
  1989年   16篇
  1988年   14篇
  1987年   12篇
  1986年   6篇
  1985年   15篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1977年   3篇
  1976年   4篇
  1975年   8篇
  1974年   5篇
排序方式: 共有4805条查询结果,搜索用时 187 毫秒
81.
An effective approach, using the plasmid YCplac33-GHK, is developed to construct a ploidy series of Saccharomyces cerevisiae. YCplac33-GHK harbors the HO gene under the control of galactose-inducible promoter and KanMX4 as the selective marker. The simple method can solve the problem of industrial applications of strains with resistance genes.  相似文献   
82.
83.
84.
Wee1, a protein kinase, regulates the G2 checkpoint in response to DNA damage. Preclinical studies have elucidated the role of wee1 in DNA damage repair and the stabilization of replication forks, supporting the validity of wee1 inhibition as a viable therapeutic target in cancer. MK-1775, a selective and potent small-molecule inhibitor of wee1, is under clinical development as a potentiator of DNA damage caused by cytotoxic chemotherapies. We present a review of the role of wee1 in the cell cycle and DNA replication and summarize the clinical development to date of this novel class of anticancer agents.  相似文献   
85.
Angelman syndrome (AS) is a neurodevelopment disorder characterized by severe cognitive impairment and a high rate of autism. AS is caused by disrupted neuronal expression of the maternally inherited Ube3A ubiquitin protein ligase, required for the proteasomal degradation of proteins implicated in synaptic plasticity, such as the activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mice deficient in maternal Ube3A express elevated levels of Arc in response to synaptic activity, which coincides with severely impaired long-term potentiation (LTP) in the hippocampus and deficits in learning behaviors. In this study, we sought to test whether elevated levels of Arc interfere with brain-derived neurotrophic factor (BDNF) TrkB receptor signaling, which is known to be essential for both the induction and maintenance of LTP. We report that TrkB signaling in the AS mouse is defective, and show that reduction of Arc expression to control levels rescues the signaling deficits. Moreover, the association of the postsynaptic density protein PSD-95 with TrkB is critical for intact BDNF signaling, and elevated levels of Arc were found to impede PSD-95/TrkB association. In Ube3A deficient mice, the BDNF-induced recruitment of PSD-95, as well as PLCγ and Grb2-associated binder 1 (Gab1) with TrkB receptors was attenuated, resulting in reduced activation of PLCγ-α-calcium/calmodulin-dependent protein kinase II (CaMKII) and PI3K-Akt, but leaving the extracellular signal-regulated kinase (Erk) pathway intact. A bridged cyclic peptide (CN2097), shown by nuclear magnetic resonance (NMR) studies to uniquely bind the PDZ1 domain of PSD-95 with high affinity, decreased the interaction of Arc with PSD-95 to restore BDNF-induced TrkB/PSD-95 complex formation, signaling, and facilitate the induction of LTP in AS mice. We propose that the failure of TrkB receptor signaling at synapses in AS is directly linked to elevated levels of Arc associated with PSD-95 and PSD-95 PDZ-ligands may represent a promising approach to reverse cognitive dysfunction.  相似文献   
86.
Rosiglitazone (RGL), a synthetic agonist for peroxisome proliferator activated receptor γ (PPARγ), exhibits a potent anti-inflammatory activity by attenuating local infiltration of neutrophils and monocytes in the renal interstitium. To evaluate the mechanisms that account for inhibiting inflammatory cells infiltration, we investigated the effect of RGL on chemokines secretion and nuclear factor-kappa B (NF-κB) activation in human renal proximal tubular cells (PTCs). We demonstrated that RGL significantly inhibited lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) production in a dose-dependent manner, without appreciable cytotoxicity. Chromatin immunoprecipitation (ChIP) assays clearly revealed that, RGL inhibited p65 binding to IL-8/MCP-1 gene promoters in LPS-stimulated PTCs. Interestingly, further experiments showed RGL reversed LPS-induced nuclear receptor corepressor (NCoR) degradation. In addition, knockdown of protein inhibitor of activated STAT1 (PIAS1), an indispensable small ubiquitin-like modifier (SUMO) ligase, abrogated the effects of RGL on antagonizing LPS-induced IL-8/MCP-1 overexpression and NCoR degradation. These findings suggest that, RGL activates PPARγ SUMOylation, inhibiting NCoR degradation and NF-κB activation in LPS-stimulated PTCs, which in turn decrease chemokines expression. The results unveil a new mechanism triggered by RGL for prevention of tubular inflammatory injury.  相似文献   
87.
Dam construction causes the accumulation of phosphorus in the sediments of reservoirs and increases the release rate of internal phosphorus (P) loading. This study investigated the longitudinal variability of phosphorus fractions in sediments and the relationship between the contents of phosphorus fractions and its influencing factors of the Manwan Reservoir, Lancang River, Yunnan Province, China. Five sedimentary phosphorus fractions were quantified separately: loosely bound P (ex-P); reductant soluble P (BD-P); metal oxide-bound P (NaOH-P); calcium-bound P (HCl-P), and residual-P. The results showed that the total phosphorus contents ranged from 623 to 899 µg/g and were correlated positively with iron content in the sediments of the reservoir. The rank order of P fractions in sediments of the mainstream was HCl-P>NaOH-P>residual-P>BD-P>ex-P, while it was residual-P>HCl-P>NaOH-P>BD-P>ex-P in those of the tributaries. The contents of bio-available phosphorus in the tributaries, including ex-P, BD-P and NaOH-P, were significantly lower than those in the mainstream. The contents of ex-P, BD-P, NaOH-P showed a similar increasing trend from the tail to the head of the Manwan Reservoir, which contributed to the relatively higher content of bio-available phosphorus, and represents a high bio-available phosphorus releasing risk within a distance of 10 km from Manwan Dam. Correlation and redundancy analyses showed that distance to Manwan Dam and the silt/clay fraction of sediments were related closely to the spatial variation of bio-available phosphorus.  相似文献   
88.
Porous calcium phosphate ceramics are used in orthopedic and craniofacial applications to treat bone loss, or in dental applications to replace missing teeth. The implantation of these materials, however, does not induce stem cell differentiation, so suitable additional materials such as porous calcium phosphate discs are needed to influence physicochemical responses or structural changes. Rabbit adipose-derived stem cells (ADSC) and mouse osteoblastic cells (MC3T3-E1) were evaluated in vitro by the MTT assay, semi-quantitative RT-PCR, and immunoblotting using cells cultured in medium supplemented with extracts from bioceramics, including calcium metaphosphate (CMP), hydroxyapatite (HA) and collagen-grafted HA (HA-col). In vivo evaluation of the bone forming capacity of these bioceramics in rat models using femur defects and intramuscular implants for 12 weeks was performed. Histological analysis showed that newly formed stromal-rich tissues were observed in all the implanted regions and that the implants showed positive immunoreaction against type I collagen and alkaline phosphatase (ALP). The intramuscular implant region, in particular, showed strong positive immunoreactivity for both type I collagen and ALP, which was further confirmed by mRNA expression and immunoblotting results, indicating that each bioceramic material enhanced osteogenesis stimulation. These results support our hypothesis that smart bioceramics can induce osteoconduction and osteoinduction in vivo, although mature bone formation, including lacunae, osteocytes, and mineralization, was not prominent until 12 weeks after implantation.  相似文献   
89.
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.  相似文献   
90.
Chamber tests are usually used to determine the source characteristics of semi-volatile organic compounds (SVOCs) which are critical to quantify indoor exposure to SVOCs. In contrast to volatile organic compounds (VOCs), the sorption effect of SVOCs to chamber surfaces usually needs to be considered due to the much higher surface/air partition coefficients, resulting in a long time to reach steady state, frequently on the order of months, and complicating the mathematical analysis of the resulting data. A chamber test is also complicated if the material-phase concentration is not constant. This study shows how to design a chamber to overcome these limitations. A dimensionless mass transfer analysis is used to specify conditions for (1) neglecting the SVOC sorption effect to chamber surfaces, (2) neglecting the convective mass transfer resistance at sorption surfaces if the sorption effect cannot be neglected, and (3) regarding the material-phase concentration in the source as constant. Several practical and quantifiable ways to improve chamber design are proposed. The approach is illustrated by analyzing available data from three different chambers in terms of the accuracy with which the model parameters can be determined and the time needed to conduct the chamber test. The results should greatly facilitate the design of chambers to characterize SVOC emissions and the resulting exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号