首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2002篇
  免费   153篇
  国内免费   3篇
  2024年   2篇
  2023年   26篇
  2022年   28篇
  2021年   60篇
  2020年   30篇
  2019年   47篇
  2018年   66篇
  2017年   51篇
  2016年   81篇
  2015年   87篇
  2014年   112篇
  2013年   163篇
  2012年   175篇
  2011年   155篇
  2010年   102篇
  2009年   91篇
  2008年   125篇
  2007年   122篇
  2006年   106篇
  2005年   72篇
  2004年   69篇
  2003年   70篇
  2002年   64篇
  2001年   30篇
  2000年   31篇
  1999年   29篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   15篇
  1991年   16篇
  1990年   11篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1965年   1篇
  1962年   1篇
排序方式: 共有2158条查询结果,搜索用时 31 毫秒
31.
Jang IC  Oh SJ  Seo JS  Choi WB  Song SI  Kim CH  Kim YS  Seo HS  Choi YD  Nahm BH  Kim JK 《Plant physiology》2003,131(2):516-524
Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin promoter (Ubi1). The high catalytic efficiency (Seo et al., 2000) of the fusion enzyme and the single-gene engineering strategy make this an attractive candidate for high-level production of trehalose; it has the added advantage of reducing the accumulation of potentially deleterious T-6-P. The trehalose levels in leaf and seed extracts from Ubi1::TPSP plants were increased up to 1.076 mg g fresh weight(-1). This level was 200-fold higher than that of transgenic tobacco (Nicotiana tabacum) plants transformed independently with either TPS or TPP expression cassettes. The carbohydrate profiles were significantly altered in the seeds, but not in the leaves, of Ubi1::TPSP plants. It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and root morphology was altered. Interestingly, our Ubi1::TPSP plants showed no growth inhibition or visible phenotypic alterations despite the high-level production of trehalose. Moreover, trehalose accumulation in Ubi1::TPSP plants resulted in increased tolerance to drought, salt, and cold, as shown by chlorophyll fluorescence and growth inhibition analyses. Thus, our results suggest that trehalose acts as a global protectant against abiotic stress, and that rice is more tolerant to trehalose synthesis than dicots.  相似文献   
32.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   
33.
Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone‐butanol‐ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol‐butanol‐ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab‐scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot‐scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab‐scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1083–1088, 2013  相似文献   
34.
35.
36.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   
37.
Controlling the energetics and backbone order of semiconducting polymers is essential for the performance improvement of polymer‐based solar cells. The use of fluorine as the substituent for the backbone is known to effectively deepen the molecular orbital energy levels and coplanarize the backbone by noncovalent interactions with sulfur of the thiophene ring. In this work, novel semiconducting polymers are designed and synthesized based on difluoronaphthobisthiadiazole (FNTz) as a new family of naphthobisthiadiazole (NTz)–quaterthiophene copolymer systems, which are one of the highest performing polymers in solar cells. The effect of the fluorination position on the energetics and backbone order is systematically studied. It is found that the dependence of the solar cell fill factor on the active layer thickness is very sensitive to the fluorination position. It is thus further investigated and discussed how the structural features of the polymers influence the photovoltaic parameters as well as the diode characteristics and bimolecular recombination. Further, the polymer with fluorine on both the naphthobisthiadiazole and quaterthiophene moieties exhibits a quite high power conversion efficiency of 10.8% in solar cells in combination with a fullerene. It is believed that the results would offer new insights into the development of semiconducting polymers.  相似文献   
38.
39.

This study investigated the biomass production process from the laboratory to the pilot scale in order to use the nutrient-rich biomass of the diatom Thalassiosira weissflogii as live feed for white-leg shrimp (Litopenaeus vannamei) at larval stages (zoeal, mysis, and postlarval) and in commercial production in hatcheries in Vietnam. Our results showed that T. weissflogii was successfully cultured in 1–2 L Erlenmeyer flasks, 0.2–3.5 m3 composite tanks, and 6.5 m3 tubular photobioreactors, with the highest cell density of 1.6 × 106 cells mL?1 reached after 6 days of culture. Under optimal culture conditions, the protein, lipid, and carbohydrate contents in this algal biomass were 13.2%, 20.0%, and 10.0% of dry cell weight, respectively. The fatty acid composition contains high amount of palmitic acid (C16:0, 43.11% of total fatty acid), and polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, C20:5ω-3), approximated 16.5% of total fatty acid. In a 50 L larval rearing tank, at the optimal stocking density of 125 nauplii L?1, the survival percentage (75.55%), the total body length (from 5.376 ± 0.007 to 10.860 ± 0.030 mm), and weight (at from PL1 to PL12 stages) (from 0.145 ± 0.002 to 1.158 ± 0.005 g) of the white-leg shrimp larvae reached the highest values but the metamorphosis time (234 h) was shortest compared with the other stocking densities. Further, adding living T. weissflogii biomass to the diet of white-leg shrimp larvae at the nauplii 6 stage led to an increase in the body length, weight, and survival percentage of white-leg shrimp larvae of 21.17%, 35.7%, and 33% higher compared with those of larvae fed the control diet (without the addition of T. weissflogii), respectively. At the same time, the metamorphosis time of larvae (from Z1 to PL1) decreased by 4 h compared to the control group. In intensive ponds (area of 6400 m2 pond?1), using seed stocks at the postlarvae 12 stage that had been fed T. weissflogii, the final weight, yield, and survival percentage of the shrimp were increased by 7.3%, 14.2%, and 16.3%, respectively, compared with those of the control group. There were no statistically significant differences in the protein and carbohydrate contents in the shrimp flesh among the experimental and control group (p > 0.05). The lipid, omega-3, omega-6, and omega-9 fatty acid contents of shrimp flesh in experiment formula (per 100 g shrimp) were 1.21 g, 72.9 mg, 114 mg, and 86.1 mg, 11%, 29%, 21.6%, and 17.7% higher than that those in control, respectively. The obtained results show the great potential of using T. weissflogii as live feed on white-leg shrimp farms in Vietnam.

  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号