首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  1967年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
Fischer indole synthesis of indole by using phenyl-hydrazine and acetaldehyde resulted 1H-Indole while phenyl-hydrazine reacted with malonaldehyde gives 1H-Indole-3-carbaldehyde. Also Vilsmeier-Haack formylation of 1H-Indole gives 1H-Indole-3-carbaldehyde. 1H-Indole-3-carbaldehyde were oxidized to form 1H-Indole-3-carboxylic acid. 1H-Indole reacted with excess of BuLi at −78 °C using dry ice also gives 1H-Indole-3-carboxylic acid. Obtained 1H-Indole-3-carboxylic acid was converted to ester and ester in to acid hydrazide. Finally 1H-Indole-3-carboxylic acid hydrazide reacted with substituted carboxylic acid gives microbial active indole substituted oxadiazoles. Synthesized compounds 9a – j showing promising in vitro anti microbial activities against S. aureus bacteria compared with Streptomycin. Compound 9a , 9f and 9g showing activities against E. coli compared with standards. Compound 9a and 9f are found potent active against B. subtilis compared with reference standard while compound 9a , 9c and 9j active against S. typhi.  相似文献   
22.
Mycoendophytes are the fungi that occur inside the plant tissues without exerting any negative impact on the host plant. They are most frequently isolated endophytes from the leaf, stem, and root tissues of various plants. Among all fungi, the mycoendophytes as biosynthesizer of noble metal nanoparticles (NPs) are less known. However, some reports showing efficient synthesis of metal nanoparticles, mainly silver nanoparticles and its remarkable antimicrobial activity against bacterial and fungal pathogens of humans and plants. The nanoparticles synthesized from mycoendophytes present stability, polydispersity, and biocompatibility. These are non-toxic to humans and environment, can be gained in an easy and cost-effective manner, have wide applicability and could be explored as promising candidates for a variety of biomedical, pharmaceutical, and agricultural applications. Mycogenic silver nanoparticles have also demonstrated cytotoxic activity against cancer cell lines and may prove to be a promising anticancer agent. The present review focuses on the biological synthesis of metal nanoparticles from mycoendophytes and their application in medicine. In addition, different mechanisms of biosynthesis and activity of nanoparticles on microbial cells, as well as toxicity of these mycogenic metal nanoparticles, have also been discussed.  相似文献   
23.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of alpha motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron development. Using antisense morpholinos to reduce Smn levels throughout the entire embryo, we found motor axon-specific pathfinding defects. Reduction of Smn in individual motoneurons revealed that smn is acting cell autonomously. These results show for the first time, in vivo, that Smn functions in motor axon development and suggest that these early developmental defects may lead to subsequent motoneuron loss.  相似文献   
24.
25.
Artemisia pallens Wall. ex DC., popularly known as davana, has gained considerable attention because of its unique fragrance, high economic value, and pharmacological properties. The compositional complexity of davana essential oil (DO) has been a challenge for quality control. In this study, the chemical profile of DO was developed using polarity-based fractionation and a combination of gas chromatographic (GC-FID), hyphenated chromatographic (GC/MS), and spectroscopic (Fourier-Transform Infra-Red, 1D, 2D-Nuclear Magnetic Resonance) techniques. The analysis led to the identification of ninety-nine compounds. Major components of the DO were cis-davanone (D3, 53.0 %), bicyclogermacrene (6.9 %), trans-ethyl cinnamate (4.9 %), davana ether isomer (3.4 %), spathulenol (2.8 %), cis-hydroxy davanone (2.4 %), and trans-davanone (2.1 %). The study led to identifying several co-eluting novel minor components, which could help determine the authenticity of DO. The rigorous column-chromatography led to the isolation of five compounds. Among these, bicyclogermacrene, trans-ethyl cinnamate, and spathulenol were isolated and characterized by spectroscopic methods for the first time from DO. Pharmacological profile revealed that the treatment of DO and D3 inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6) induced by lipopolysaccharide (LPS) in primary macrophages without any cytotoxic effect after administration of their effective concentrations. The result of this study indicates the suitability of DO and D3 for further investigation for the treatment of chronic skin inflammatory conditions.  相似文献   
26.
27.
Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1 mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100 ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号