首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   4篇
  118篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   1篇
  2008年   1篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
91.
92.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat in the huntingtin gene (HTT). Molecular chaperones have been implicated in suppressing or delaying the aggregation of mutant Htt. Using in vitro and in vivo assays, we have identified a trimeric chaperone complex (Hsc70, Hsp110, and J‐protein) that completely suppresses fibrilization of HttExon1Q48. The composition of this chaperone complex is variable as recruitment of different chaperone family members forms distinct functional complexes. The trimeric chaperone complex is also able to resolubilize Htt fibrils. We confirmed the biological significance of these findings in HD patient‐derived neural cells and on an organismal level in Caenorhabditis elegans. Among the proteins in this chaperone complex, the J‐protein is the concentration‐limiting factor. The single overexpression of DNAJB1 in HEK293T cells is sufficient to profoundly reduce HttExon1Q97 aggregation and represents a target of future therapeutic avenues for HD.  相似文献   
93.
Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3‐phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2‐mediated hyperactivation of Cdk5 downstream of receptor‐ and activity‐dependent calcium influx. Our results unravel an unexpected function for PI(3)P‐containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P‐producing VPS34 kinase in neurological disease and neurodegeneration.  相似文献   
94.
Benzodiazepines are widely used for their anxiolytic, sedative, myorelaxant and anticonvulsant properties. They allosterically modulate GABA(A) receptor function by increasing the apparent affinity of the agonist GABA. We studied conformational changes induced by channel agonists at the benzodiazepine binding site. We used the rate of covalent reaction between a benzodiazepine carrying a cysteine reactive moiety with mutated receptor having a cysteine residue in the benzodiazepine binding pocket, alpha1H101Cbeta2gamma2, as a sensor of its conformation. This reaction rate is sensitive to local conformational changes. Covalent reaction locks the receptor in the conformation stabilized by positive allosteric modulators. By using concatenated subunits we demonstrated that the covalent reaction occurs either exclusively at the alpha/gamma subunit interface, or if it occurs in both alpha1 subunits, exclusively reaction at the alpha/gamma subunit interface can modulate the receptor. We found evidence for an increased rate of reaction of activated receptors, whereas reaction rate with the desensitized state is slowed down. The benzodiazepine antagonist Ro15-1788 efficiently inhibited the covalent reaction in the presence of 100 microm GABA but only partially in its absence or in the presence of 10 microm GABA. It is concluded that Ro15-1788 efficiently protects activated and desensitized states, but not the resting state.  相似文献   
95.
Carboxyalkyl derivative of the intercalating agent imidazo[4,5-b]phenazine was used for the postsynthetic oligonucleotide modification. Model pentadecathymidylate-imidazophenazine conjugate was prepared from 5′-aminoalkyl-modified (dT)15 by using phosphonium coupling reagent BOP in the presence of 1-hydroxybenzotriazole. Spectral-fluorescent properties of the conjugate were studied. The attachment of the dye was found to increase the thermal stability of (dT)15 duplex with poly(dA) by more than 4°C, probably by the intercalation mechanism.  相似文献   
96.
The structure of the pretarsus of chalcid wasps (Hymenoptera: Chalcidoidea) was examined with light and scanning electron microscopy. The pretarsus of these wasps is characterized by a distal elastic widening of the planta that spreads over the arcus, by a pair of folding plates at the dorsal side of the arolium (the dorsal plates), and by the absence of auxiliary sclerites. The surface of the fully spread arolium of chalcids has a spongiform structure. The arcus of chalcids is an apodeme of the planta. The peculiarities of the inverting/everting biomechanics of the pretarsus of chalcids involve: 1) interactions between the elastic part of the planta, the dorsal plates and the manubrium, and 2) the functioning of the elastic part of the planta and the arcus together as a single unit. A single apical seta situated distally from the campaniform sensillae and proximal row of setae on the manubrium are regarded as putative synapomorphies of Chalcidoidea. A manubrium with a distinct proximal row of three setae characterizes almost all Eulophidae, Aphelinidae and Signiphoridae (‘eulophid lineage’) and Tetracampidae, whereas a row of two setae characterizes Mymaridae, Rotoitidae and Trichogrammatidae. Other studied families (Pteromalidae, Eurytomidae, Torymidae, Ormyridae, Eupelmidae, Encyrtidae, Perilampidae), which represent a ‘pteromalid lineage’, are characterized mostly by five setae in a proximal row, which could represent a synapomorphy for these groups, or a symplesiomorphy in Chalcidoidea, depending on rooting. However, the characters may be correlated with differences in body size that characterize the different lineages rather than being phylogenetically important. Other characters that may be phylogenetically informative are: 1) shape of the manubrium (spindle‐like in Mymaridae, Rotoitidae, Trichogrammatidae and the ‘eulophid lineage’, but mostly bottle‐like in representatives of the ‘pteromalid lineage’), and 2) pubescence of the proximal part of the planta (sparse, thick setae in Rotoitidae, Trichogrammatidae and the ‘eulophid lineage’, but dense, slender setae in representatives of the ‘pteromalid lineage’).  相似文献   
97.
98.
Activities of antioxidant and associated enzymes, and oxidative stress markers were assessed in newly enclosed adult fruit flies Drosophila melanogaster developed on diets with 4 and 10% glucose or fructose. In fly males, 10% fructose promoted higher content of protein carbonyls and catalase activity, but lower superoxide dismutase (SOD) activity than 4%, while in females-lower levels of high molecular mass thiols (H-SH). Females at all diets had virtually the same level of lipid peroxides, low-molecular-mass thiols, catalase, and superoxide dismutase activities. Fed with 4% fructose and glucose males demonstrated 24 and 26% lower H-SH level than females, respectively. On diets with 4% glucose, 10% glucose and fructose females had 32, 26 and 27% lower catalase activity than respective males, and 1.3-1.5-fold lower glucose-6-phosphate dehydrogenase activity on glucose-containing diets. Strong positive correlations between H-SH level and G6PD activity, as well as between catalase and G6PDH activity were found. These results suggest that type and concentration of dietary carbohydrate affect antioxidant defense in fruit flies. It also substantially depends on fly sex, comprising presumably levels of protein carbonyls and lipid peroxides, as well as catalase and SOD activities in males and G6PDH activity in females.  相似文献   
99.
The increased generation of free radicals results in the formation of fluorescent end-products of lipid peroxidation, lipofuscin-like pigments (LFPs). The authors observed that LFPs are generated in rat brain after a normal birth during 5 postnatal days. The experimental design of the study comprised 10 groups of animals. The authors measured prenatal values 1 day and 7 days before birth, and then the animals were sampled on postnatal day 1, 2, 5, 10, 15, 25, 35, and 90. Maximum LFP concentration is achieved on the postnatal day 2. Starting from postnatal day 10, LFP concentration returns to prenatal values. A new rise in LFP concentration is observed at 3 months of age. This is associated with the beginning of the aging process. LFPs were characterized by fluorescence spectroscopy using tridimensional excitation spectra, synchronous spectra and their derivatives, and HPLC with fluorescence detection. It was possible to discern several tens of fluorescent compounds of unknown structure that are generated and metabolized during early development. The authors suggest that LFPs are formed after respiratory burst of microglia phagocytosing apoptotic cells.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号