首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1845篇
  免费   161篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   35篇
  2021年   55篇
  2020年   34篇
  2019年   50篇
  2018年   63篇
  2017年   42篇
  2016年   75篇
  2015年   99篇
  2014年   104篇
  2013年   149篇
  2012年   152篇
  2011年   138篇
  2010年   76篇
  2009年   89篇
  2008年   131篇
  2007年   121篇
  2006年   125篇
  2005年   114篇
  2004年   102篇
  2003年   89篇
  2002年   65篇
  2001年   8篇
  2000年   9篇
  1999年   8篇
  1998年   20篇
  1997年   9篇
  1996年   6篇
  1995年   14篇
  1994年   3篇
  1993年   9篇
  1992年   7篇
  1990年   3篇
  1988年   1篇
排序方式: 共有2013条查询结果,搜索用时 203 毫秒
81.
In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micropreparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products. The high resolution mass spectrometric proteome analysis should facilitate the unequivocal identification of subunits, aggregations, modifications and degradation products of surfactant proteins and hence contribute to the understanding of the mechanistic basis of lung disease pathogenesis.  相似文献   
82.
Microarray-driven gene-expression profiles are generally produced and analyzed for a single specific experimental model. We have assessed an analytical approach that simultaneously evaluates multi-species experimental models within a particular biological condition using orthologous genes as linkers for the various Affymetrix microarray platforms on multi-species models of ventilator-associated lung injury. The results suggest that this approach may be a useful tool in the evaluation of biological processes of interest and selection of process-related candidate genes.  相似文献   
83.
Catecholaminergic neurons are affected in several neurological and psychiatric diseases. Tyrosine hydroxylase (TH) is the first, rate-limiting enzyme in catecholamine synthesis. We report a knockin mouse expressing Cre-recombinase from the 3'-untranslated region of the endogenous Th gene by means of an internal ribosomal entry sequence (IRES). The resulting Cre expression matches the normal pattern of TH expression, while the pattern and level of TH are not altered in the knockin mouse. Crossings with two different LacZ reporter mice demonstrated Cre-mediated genomic recombination in TH expressing tissues. In addition, LacZ was found in some unexpected cell populations (including oocytes), indicating recombination due to transient developmental TH expression. Our novel knockin mouse can be used for generation of tissue-specific or general knockouts (depending on scheme of crossing) in mice carrying genes flanked by loxP sites. This knockin mouse can also be used for tracing cell lineages expressing TH during development.  相似文献   
84.
85.
Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B12) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in eubacteria. In addition, the binding signal (CBL-box) for a hypothetical B12 regulator was identified in some archaea. A search for B12 elements and CBL-boxes and positional analysis identified a large number of new candidate B12-regulated genes in various prokaryotes. Among newly assigned functions associated with the cobalamin biosynthesis, there are several new types of cobalt transporters, ChlI and ChlD subunits of the CobN-dependent cobaltochelatase complex, cobalt reductase BluB, adenosyltransferase PduO, several new proteins linked to the lower ligand assembly pathway, l-threonine kinase PduX, and a large number of other hypothetical proteins. Most missing genes detected within the cobalamin biosynthetic pathways of various bacteria were identified as nonorthologous substitutes. The variable parts of the cobalamin metabolism appear to be the cobalt transport and insertion, the CobG/CbiG- and CobF/CbiD-catalyzed reactions, and the lower ligand synthesis pathway. The most interesting result of analysis of B12 elements is that B12-independent isozymes of the methionine synthase and ribonucleotide reductase are regulated by B12 elements in bacteria that have both B12-dependent and B12-independent isozymes. Moreover, B12 regulons of various bacteria are thought to include enzymes from known B12-dependent or alternative pathways.  相似文献   
86.
The yeast [PSI+] determinant is related to formation of large prion-like aggregates of the conformationally altered Sup35 protein. Here, we show that these aggregates are composed of small Sup35 prion polymers and associated proteins. In contrast to other protein complexes of yeast lysates, but similarly to amyloid fibers, these polymers are insoluble in SDS at room temperature. The polymers on average are about 30-fold smaller than the aggregates and comprise from 8 to 50 Sup35 monomers. The size of polymers is characteristic of a given [PSI+] variant and differs between the variants. Blocked expression of Hsp104 chaperone causes gradual increase in the size of prion polymers, while inactivation of Hsp104 by guanidine HCl completely stops their fragmentation, which shows indispensability of Hsp104 for this process.  相似文献   
87.
Oncogenic mutations in the tumor suppressor protein p53 are found mainly in its DNA-binding core domain. Many of these mutants are thermodynamically unstable at body temperature. Here we show that these mutants also denature within minutes at 37 degrees C. The half-life (t(1/2)) of the unfolding of wild-type p53 core domain was 9 min. Hot spot mutants denatured more rapidly with increasing thermodynamic instability. The highly destabilized mutant I195T had a t(1/2) of less than 1 min. The wild-type p53-(94-360) construct, containing the core and tetramerization domains, was more stable, with t(1/2) = 37 min at 37 degrees C, similar to full-length p53. After unfolding, the denatured proteins aggregated, the rate increasing with higher concentrations of protein. A derivative of the p53-stabilizing peptide CDB3 significantly slowed down the unfolding rate of the p53 core domain. Drugs such as CDB3, which rescue the conformation of unstable mutants of p53, have to act during or immediately after biosynthesis. They should maintain the mutant protein in a folded conformation and prevent its aggregation, allowing it enough time to reach the nucleus and bind its sequence-specific target DNA or the p53 binding proteins that will stabilize it.  相似文献   
88.
A heteroxylan was isolated from Eucalyptus globulus wood by extraction of peracetic acid delignified holocellulose with dimethyl sulfoxide. Besides (1-->4)-linked beta-D-xylopyranosyl units of the backbone and short side chains of terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl residues (MeGlcA) in a 1:10 molar ratio, this hemicellulose contained galactosyl and glucosyl units attached at O-2 of MeGlcA originating from rhamnoarabinogalactan and glucan backbones, respectively. About 30% of MeGlcA units were branched at O-2. The O-acetyl-(4-O-methylglucurono)xylan showed an acetylation degree of 0.61, as determined by 1H NMR spectroscopy, and a weight-average molecular weight (M(w)) of about 36 kDa (P=1.05) as revealed from size-exclusion chromatography (SEC) analysis. About half of the beta-D-xylopyranosyl units of the backbone were found as acetylated moieties at O-3 (34 mol%), O-2 (15 mol%) or O-2,3 (6 mol%). Practically, all beta-D-xylopyranosyl units linked at O-2 with MeGlcA residues were 3-O-acetylated (10 mol%).  相似文献   
89.
A theoretical study of electron transfer (ET) pathways in a recently crystallized Clostridium acidurici ferredoxin is reported. The electronic structure of the protein complex is treated at the semiempirical extended Hückel level, and the tunneling pathways are calculated with the rigorous quantum mechanical method of tunneling currents. The model predicts two pathways between the two [4Fe-4S] cubanes: a strong one running directly from Cys(14) to Cys(43) and a weaker one from Cys(14) via Ile(23) to Cys(18), whereas other amino acids do not play a significant role in the electron tunneling. The cysteine ligands conduct almost all of the current when Ile(23) is mutated to valine in silico, so that there is no appreciable change in the ET rate. The calculated value of the transfer matrix element is consistent with the experimentally determined rate of transfer. Results of the sequence analysis performed on this ferredoxin reveal that Ile(23) is a highly variable amino acid compared with the cubane-ligating cysteine amino acids, even though Ile(23) lies directly between the donor and acceptor complexes. We further argue that the homologous proteins with a [3Fe-4S] cofactor, which does not have one of the four cysteine ligands, use the same tunneling pathways as those in this ferredoxin, on the basis of the high homology as well as the absolute conservation of Cys(14) and Cys(43) which serve as the main tunneling conduit. Our results explain why mutation of amino acids around and between the donor and acceptor cubane clusters, including that of Ile(23), does not appreciably affect the rate of transfer and add support to the proposal that there exist evolutionarily conserved electron tunneling pathways in biological ET reactions.  相似文献   
90.
The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (R(w)) of approximately 3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw or=9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)(2) tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号