首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1873篇
  免费   161篇
  国内免费   8篇
  2042篇
  2024年   4篇
  2023年   12篇
  2022年   41篇
  2021年   56篇
  2020年   34篇
  2019年   50篇
  2018年   63篇
  2017年   42篇
  2016年   76篇
  2015年   100篇
  2014年   105篇
  2013年   150篇
  2012年   152篇
  2011年   139篇
  2010年   77篇
  2009年   90篇
  2008年   132篇
  2007年   122篇
  2006年   125篇
  2005年   115篇
  2004年   102篇
  2003年   90篇
  2002年   67篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   20篇
  1997年   9篇
  1996年   6篇
  1995年   14篇
  1994年   3篇
  1993年   9篇
  1992年   7篇
  1990年   3篇
  1988年   1篇
排序方式: 共有2042条查询结果,搜索用时 0 毫秒
91.
92.
Condensin complexes are essential for chromosome condensation and segregation in mitosis, while condensin dysfunction, among other pathways leading to chromosomal bridging in mitosis, may play a role in tumor genomic instability, including recently discovered chromotripsis. To characterize potential double-strand breaks specifically occurring in late anaphase, human chromosomes depleted of condensin were analyzed by γ-H2AX ChIP followed by high-throughput sequencing (ChIP-seq). In condensin-depleted cells, the nonrepeated parts of the genome were shown to contain distinct γ-H2AX enrichment zones 75% of which overlapped with known hemizygous deletions in cancers. Furthermore, some tandemly repeated DNA sequences, analyzed separately from the rest of the genome, showed significant γ-H2AX enrichment in condensin-depleted anaphases. The most commonly occurring targets of such enrichment included simple repeats, centromeric satellites, and rDNA. The two latter categories indicate that acrocentric human chromosomes are especially susceptible to breaks upon condensin deficiency. The genomic regions that are specifically destabilized upon condensin dysfunction may constitute a condensin-specific chromosome destabilization pattern.  相似文献   
93.
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.  相似文献   
94.
95.
Two genera new to China, Fibigia and Pachyneurum and 10 species found in China for the first time, Puccinellia kalininae, Stellaria pulvinata, Nanophyton mongolicum, Capsella orienalis, Pachyneurum grandiflorum, Fibigia spathulata, Craniospermum tuvinicum, Euphrasia schischkinii, E. syreitschikovii, Veronica schmakovii along with 3 species previously unknown in Xinjiang, Rorippa indica, Acalypha australis, and Phalaris canariensis, found in northwest Xinjiang are reported. In addition, the distribution of two species in China is corrected: Lepidium densiflorum is firstly reported for Nei Mongol while the occurrence of Draba sibirica in Gansu is not confirmed. Results of floristic studies by the Chinese–Russian Altai expedition during 2004–2007 are also summarized including 34 species and 1 subspecies revealed as new for China; 7 species confirmed to occur in China; one genus and 5 species not confirmed for China, as well as a number of new records for various provinces, mostly Xinjiang.  相似文献   
96.
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.  相似文献   
97.
Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents.  相似文献   
98.
Ultraviolet light (UV) can provoke genome instability, partly through its ability to induce homologous recombination (HR). However, the mechanism(s) of UV-induced recombination is poorly understood. Although double-strand breaks (DSBs) have been invoked, there is little evidence for their generation by UV. Alternatively, single-strand DNA lesions that stall replication forks could provoke recombination. Recent findings suggest efficient initiation of UV-induced recombination in G1 through processing of closely spaced single-strand lesions to DSBs. However, other scenarios are possible, since the recombination initiated in G1 can be completed in the following stages of the cell cycle. We developed a system that could address UV-induced recombination events that start and finish in G2 by manipulating the activity of the sister chromatid cohesion complex. Here we show that sister-chromatid cohesion suppresses UV-induced recombination events that are initiated and resolved in G2. By comparing recombination frequencies and survival between UV and ionizing radiation, we conclude that a substantial portion of UV-induced recombination occurs through DSBs. This notion is supported by a direct physical observation of UV-induced DSBs that are dependent on nucleotide excision repair. However, a significant role of nonDSB intermediates in UV-induced recombination cannot be excluded.  相似文献   
99.
Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy that has been linked to mutations in multiple genes. Mutations in the neurofilament light ( NFL ) chain gene lead to the CMT2E form whereas mutations in the myotubularin-related protein 2 and 13 ( MTMR2 and MTMR13 ) genes lead to the CMT4B form. These two forms share characteristic pathological hallmarks on nerve biopsies including concentric sheaths ('onion bulbs') and, in at least one case, myelin loops. In addition, MTMR2 protein has been shown to interact physically with both NFL and MTMR13. Here, we present evidence that CMT-linked mutations of MTMR2 can cause NFL aggregation in a cell line devoid of endogenous intermediate filaments, SW13vim. Mutations in the protein responsible for X-linked myotubular myopathy (myotubularin, MTM1) also induced NFL abnormalities in these cells. We also show that two MTMR2 mutant proteins, G103E and R283W, are unable to form dimers and undergo phosphorylation in vivo , implicating impaired complex formation in myotubularin-related pathology.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号