首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1979篇
  免费   161篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   37篇
  2021年   55篇
  2020年   35篇
  2019年   50篇
  2018年   66篇
  2017年   43篇
  2016年   77篇
  2015年   100篇
  2014年   107篇
  2013年   151篇
  2012年   154篇
  2011年   145篇
  2010年   82篇
  2009年   92篇
  2008年   136篇
  2007年   126篇
  2006年   127篇
  2005年   121篇
  2004年   108篇
  2003年   99篇
  2002年   72篇
  2001年   16篇
  2000年   16篇
  1999年   23篇
  1998年   22篇
  1997年   11篇
  1996年   7篇
  1995年   16篇
  1994年   4篇
  1993年   9篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有2147条查询结果,搜索用时 703 毫秒
71.
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water‐oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane‐inlet mass spectrometry and O2‐polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these ‘PSII birth defects’ in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de‐etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2‐polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB‐inhibitor binding, and thermoluminescence studies indicate that the decline of the high‐light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA?QB during de‐etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer‐range energy transfer.  相似文献   
72.
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the ‘out’ state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod’s binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins.

Communicated by Ramaswamy H. Sarma  相似文献   

73.
The first comprehensive phylogenetic study of Euphausiacea (all 86 valid species) is presented. It is based on four molecular markers and 168 morphological characters (including 58 characters of the petasma). Phylogenetic analyses support the monophyly and robustness of the families Bentheuphausidae and Euphausiidae and reveal three major clades for which we erect three new subfamilies: Thysanopodinae, Euphausiinae and Nematoscelinae. All genus-level clades are statistically supported (except Thysanopoda in molecular analyses), deeply nested within the subfamily-level clades, and encompass 14 new species groups. Copulatory structures have a major impact on tree topology in the morphological analysis, the removal of which resulted in only half the number of supported clades and genera. We revealed three groups of morphological characters, which are probably coupled with the same biological role and thus interlinked evolutionarily: (i) antennular peduncle and petasma (copulation); (ii) eyes and anterior thoracopods (feeding); and (iii) shape of carapace and pleon (defence). We analysed the evolutionary pathways of the clades into main oceanic biotopes and compared them with morphological adaptations most likely to be coupled with this process.  相似文献   
74.
Insertions and deletions of lengths not divisible by 3 in protein-coding sequences cause frameshifts that usually induce premature stop codons and may carry a high fitness cost. However, this cost can be partially offset by a second compensatory indel restoring the reading frame. The role of such pairs of compensatory frameshifting mutations (pCFMs) in evolution has not been studied systematically. Here, we use whole-genome alignments of protein-coding genes of 100 vertebrate species, and of 122 insect species, studying the prevalence of pCFMs in their divergence. We detect a total of 624 candidate pCFM genes; six of them pass stringent quality filtering, including three human genes: RAB36, ARHGAP6, and NCR3LG1. In some instances, amino acid substitutions closely predating or following pCFMs restored the biochemical similarity of the frameshifted segment to the ancestral amino acid sequence, possibly reducing or negating the fitness cost of the pCFM. Typically, however, the biochemical similarity of the frameshifted sequence to the ancestral one was not higher than the similarity of a random sequence of a protein-coding gene to its frameshifted version, indicating that pCFMs can uncover radically novel regions of protein space. In total, pCFMs represent an appreciable and previously overlooked source of novel variation in amino acid sequences.  相似文献   
75.
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near‐infrared fluorescent proteins with enhanced intracellular brightness. The developed near‐infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near‐infrared fluorescent proteins enabled crosstalk‐free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual‐color near‐infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.  相似文献   
76.
Age-associated neurodegenerative disorders are becoming more prevalent as the mean age of the population increases in the United States over the next few decades. Both normal brain aging and Alzheimer's disease (AD) are associated with oxidative stress. Our laboratory has used a wide variety of physical and biochemical methods to investigate free radical oxidative stress in several models of aging and AD. Beta-amyloid (A beta), the peptide that constitutes the central core of senile plaques in AD brain, is associated with free radical oxidative stress and is toxic to neurons. This review summarizes some of our studies in aging and A beta-associated free radical oxidative stress and on the modulating effects of free radical scavengers on neocortical synaptosomal membrane damage found in aging and A beta-treated systems.  相似文献   
77.
Parameters of EGF-receptor complex endocytosis have been studied in the early and late G1 phase and in mitosis. As a model, mouse mammary epithelial cells HC11 were used, whose growth depends on EGF presence in the medium. The Scatchard analysis has demonstrated that the surface receptors are represented by two receptor populations: 4800 high affinity (KD = 10(-11) M) receptors, and 73,000 low affinity (KD = 4.10(-9) M) receptors. Incubation of cells with the growth factor (5 ng/ml) resulted in a decrease in 125I-EGF binding, with its level being low until entering the S-phase. Under these conditions, receptors disposed on the plasma membrane presented a homogeneous population (KD = 8.10(-11) M, 14,000 receptors per cell). No reliable difference was revealed between the EGF-receptor complexes, internalized in early and late G1 phases, in respect to the internalization rate, level of recycling, degradation, and dynamics of compartmentalization. However, endocytosis of EGF-receptor complexes was found to be completely blocked in mitosis at the stage of internalization.  相似文献   
78.
Polyribonucleotide duplex poly(A).poly(U) was modified with cis-diammine dichloroplatinum (II) (cis-DDP). It was shown that the antiinfluenza protective activity of the modified duplex in mice increased with the degree of modification (rb) rising up to 0.2. The effect was different from that for poly(I).poly(C) and poly(G).poly(C). The interferon titers in the murine brain increased in parallel with increasing of the antiviral activity. It was assumed that the structural specificity of the poly(A).poly(U) duplex was responsible for the phenomenon and that cis-DDP interaction with N(7) atoms of the adenine heterocycles blocked the "abnormal" Hoogsteen pairing of adenines with uracils. As a result the antiviral activity increased because of lowering the quantity of the intramolecular defects and increasing the length of the regular double-stranded regions.  相似文献   
79.
Amyloid -peptide (A), the main constituent of senile plaques in Alzheimer's disease (AD) brain, is hypothesized to be a key factor in the neurodegeneration seen in AD. Recently it has been shown by us and others that the neurotoxicity of A occurs in conjunction with free radical oxidative stress associated with the peptide. A(1–40) and several other fragments of the A sequence are associated with free radicals in solution that are detectable using electron paramagnetic resonance spectroscopy. These free radicals were shown to attack brain cell membranes, initiate lipid peroxidation, increase Ca2+ influx and damage membrane and cytosolic proteins. In AD brain obtained under rapid autopsy protocol, the activity of the oxidatively-sensitive enzyme creatine kinase was shown to be significantly reduced. We reasoned that A-associated free radical-induced modification of creatine kinase activity and other markers of cellular damage might be modulated by free radical scavengers. Accordingly, this study demonstrates that vitamin E can modulate A(25–35)-induced oxidative damage to creatine kinase and cellular proteins in cultured embryonic hippocampal neurons. These results, consistent with the hypothesis of free radical-mediated A toxicity in AD, are discussed with deference to potential free radical scavengers as therapeutic agents for slowing the progression of AD.  相似文献   
80.
X-ray analysis of enzyme–DNA interactions is very informative in revealing molecular contacts, but provides neither quantitative estimates of the relative importance of these contacts nor information on the relative contributions of specific and nonspecific interactions to the total affinity of enzymes for specific DNA. A stepwise increase in the ligand complexity approach is used to estimate the relative contributions of virtually every nucleotide unit of synthetic DNA containing abasic sites to its affinity for apurinic/apyrimidinic endonuclease (APE1) from human placenta. It was found that APE1 interacts with 9–10 nt units or base pairs of single-stranded and double-stranded ribooligonucleotides and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleotide phosphate groups. Such nonspecific interactions of APE1 with nearly every nucleotide within its DNA-binding cleft provides up to seven orders of magnitude (ΔG° ~ −8.7 to −9.0 kcal/mol) of the enzyme affinity for any DNA substrate. In contrast, interactions with the abasic site together with other specific APE1–DNA interactions provide only one order of magnitude (ΔG° ~ −1.1 to −1.5 kcal/mol) of the total affinity of APE1 for specific DNA. We conclude that the enzyme's specificity for abasic sites in DNA is mostly due to a great increase (six to seven orders of magnitude) in the reaction rate with specific DNA, with formation of the Michaelis complex contributing to the substrate preference only marginally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号