首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1979篇
  免费   161篇
  国内免费   7篇
  2024年   1篇
  2023年   7篇
  2022年   37篇
  2021年   55篇
  2020年   35篇
  2019年   50篇
  2018年   66篇
  2017年   43篇
  2016年   77篇
  2015年   100篇
  2014年   107篇
  2013年   151篇
  2012年   154篇
  2011年   145篇
  2010年   82篇
  2009年   92篇
  2008年   136篇
  2007年   126篇
  2006年   127篇
  2005年   121篇
  2004年   108篇
  2003年   99篇
  2002年   72篇
  2001年   16篇
  2000年   16篇
  1999年   23篇
  1998年   22篇
  1997年   11篇
  1996年   7篇
  1995年   16篇
  1994年   4篇
  1993年   9篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有2147条查询结果,搜索用时 15 毫秒
41.
Cytokinins are ubiquitous plant hormones; their signal is perceived by sensor histidine kinases—cytokinin receptors. This review focuses on recent advances on cytokinin receptor structure, in particular sensing module and adjacent domains which play an important role in hormone recognition, signal transduction and receptor subcellular localization. Principles of cytokinin binding site organization and point mutations affecting signaling are discussed. To date, more than 100 putative cytokinin receptor genes from different plant species were revealed due to the total genome sequencing. This allowed us to employ an evolutionary and bioinformatics approaches to clarify some new aspects of receptor structure and function. Non-transmembrane areas adjacent to the ligand-binding CHASE domain were characterized in detail and new conserved protein motifs were recovered. Putative mechanisms for cytokinin-triggered receptor activation were suggested.  相似文献   
42.
The fine structure of the jaw apparatus was studied by scanning electron microscopy in eight species of Patellogastropoda. The jaw apparatus is an unpaired two-layered dorsolateral structure with anterior and posterior wings attached to the odontophore by muscles. The jaw of Testudinalia tesulata (O.F. Müller, 1776) is a derivative of the cuticle typical for the foregut. The tissue forming the jaw is a specialized foregut epithelium (gnathoepithelium), consisting of a special type of cells called gnathoblasts. The jaw grows in areas of the epithelium characterized by high concentration of electron-dense vesicles, ER and long microvilli that penetrate deep into the jaw plate. This indicates that the gnathoblasts take an active part in jaw growth. In most cases, these areas of the gnathoepithelium are highly folded. The main differences between the species studied are form and thickness of the frontal edge of the jaw. These differences do not correlate with the systematic position of the species studied but likely depend more on the feeding mode. The transmission electron microscopy studies yielded new morphological criteria for comparison between various gastropod species and other members of Trochozoa, in particular, Annelida. The jaws of Annelida are cuticular structures formed on the surface of specialized epithelial cells, often also called gnathoblasts. The jaw of Patellogastropoda can be attributed to the first type of annelid jaw formation characterized by an epithelium with long microvilli and continuous growth.  相似文献   
43.
Abstract

Lipid bilayer plays a crucial role in folding of membrane peptides and their stabilization in the membrane-bound state. Correct treatment of the media effects is thus essential for realistic simulations of peptides in bilayers. Previously (Volynsky et al., 1999), we proposed an efficient solvation model which mimics heterogeneous membrane-water system. The model is based on combined employment of atomic solvation parameters for water and hydrocarbon, which approximate hydrated headgroups and acyl chains of lipids, respectively. In this study, the model is employed in non-restrained Monte Carlo simulations of several peptides: totally apolar 20-residue poly-L-Leu, hydrophobic peptide with polar edges, and strongly amphiphilic pep-tide. The principal goals are: to explore energy landscape of these peptides in membrane; to characterize the structures of low-energy states and their orientations with respect to the bilayer. Simulations were performed starting from different structures (unordered or helical) and orientations. It was found that the membrane environment significantly promotes an α-helical conformation for all the peptides, while their energetically favourable orientations are quite different. Thus, poly-Leu was immobilized inside the membrane, the hydrophobic peptide with polar termini adapted transbilayer orientation, whereas the amphiphilic peptide stayed on the lipid-water interface in peripherial orientation. Energy barriers between different states were characterized. The computational results were compared with the experimental structural data.  相似文献   
44.
Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.  相似文献   
45.
Plants, algae, and photosynthetic bacteria experience frequent changes in environment. The ability to survive depends on their capacity to acclimate to such changes. In particular, fluctuations in temperature affect the fluidity of cytoplasmic and thylakoid membranes. The molecular mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria and plants led to the directed mutagenesis of such genes that altered the membrane fluidity of cytoplasmic and thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that lipid unsaturation is essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. The unsaturation of fatty acids enhances the repair of the damaged photosystem II complex under stress conditions. In this review, we summarize the knowledge on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, on genes that are involved in acclimation to new sets of environmental conditions, and on the influence of membrane properties on photosynthetic functions.  相似文献   
46.
The mechanism of transduction of the phytochrome signal regulating the expression of succinate dehydrogenase in Arabidopsis has been investigated. Using the phytochrome mutants of Arabidopsis, it is demonstrated that the inhibition of succinate dehydrogenase in the light may result from the phytochrome A-dependent modulation of Ca2+ amount in the nuclear fraction of leaves. This leads to the activation of expression of the gene pif3 encoding the phytochrome-interacting factor PIF3, which binds to the promoter of the gene sdh1-2 encoding the SDHA subunit of succinate dehydrogenase and suppresses its expression. It is concluded that Ca2+ ions are involved in the phytochrome A-mediated inhibition of succinate dehydrogenase activity in the light.  相似文献   
47.
48.
Inhibitors that covalently damage proteins or nucleic acids offer great potency, but are difficult to rationally design and suffer from poor specificity. Here we outline a general concept for constructing covalent inhibitors, called the two-component covalent inhibitor (TCCI). The approach takes advantage of two ligand analogs equipped with pre-reactive groups. Binding of the analogs to the adjacent sites of a target biopolymer brings the pre-reactive groups in close proximity and causes their interaction followed by covalent damage of the target. In the present study we used light-activated pre-reactive groups to inactivate a DNA polymerase. It was found that the efficiency of a traditional single-component inhibitor was greatly reduced in the presence of a non-target protein, while the TCCI was not significantly affected. Our findings suggest that TCCI approach has advantages in inactivation of biopolymers in complex multi-component systems.  相似文献   
49.
Muscarinic acetylcholine receptors (mAChRs) have five known subtypes which are widely distributed in both the peripheral and central nervous system for regulation of a variety of cholinergic functions. Atropine is a well known muscarinic subtype non-specific antagonist that competitively inhibits acetylcholine (ACh) at postganglionic muscarinic sites. Atropine is used to treat organophosphate (OP) poisoning and resulting seizures in the warfighter because it competitively inhibits acetylcholine (ACh) at the muscarinic cholinergic receptors. ACh accumulates due to OP inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes ACh. However, atropine produces several unwanted side-effects including dilated pupils, blurred vision, light sensitivity, and dry mouth. To overcome these side-effects, our goal was to find an alternative to atropine that emphasizes M1 (seizure prevention) antagonism but has minimum M2 (cardiac) and M3 (e.g., eye) antagonism so that an effective less toxic medical countermeasure may be developed to protect the warfighter against OP and other chemical warfare agents (CWAs). We adopted an in silico pharmacophore modeling strategy to develop features that are characteristics of known M1 subtype-selective compounds and used the model to identify several antagonists by screening an in-house (WRAIR-CIS) compound database. The generated model for the M1 selectivity was found to contain two hydrogen bond acceptors, one aliphatic hydrophobic, and one ring aromatic feature distributed in a 3D space. From an initial identification of about five hundred compounds, 173 compounds were selected through principal component and cluster analyses and in silico ADME/Toxicity evaluations. Next, these selected compounds were evaluated in a subtype-selective in vitro radioligand binding assay. Twenty eight of the compounds showed antimuscarinic activity. Nine compounds showed specificity for M1 receptors and low specificity for M3 receptors. The pKi values of the compounds range from 4.5 to 8.5 nM in comparison to a value of 8.7 nM for atropine. 2-(diethylamino)ethyl 2,2-diphenylpropanoate (ZW62841) was found have the best desired selectivity. None of the newly found compounds were previously reported to exhibit antimuscarinic specificity. Both theoretical and experimental results are presented.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号