全文获取类型
收费全文 | 1897篇 |
免费 | 133篇 |
国内免费 | 7篇 |
专业分类
2037篇 |
出版年
2024年 | 8篇 |
2023年 | 12篇 |
2022年 | 41篇 |
2021年 | 56篇 |
2020年 | 36篇 |
2019年 | 51篇 |
2018年 | 63篇 |
2017年 | 42篇 |
2016年 | 77篇 |
2015年 | 99篇 |
2014年 | 104篇 |
2013年 | 149篇 |
2012年 | 152篇 |
2011年 | 138篇 |
2010年 | 76篇 |
2009年 | 89篇 |
2008年 | 131篇 |
2007年 | 121篇 |
2006年 | 125篇 |
2005年 | 114篇 |
2004年 | 102篇 |
2003年 | 89篇 |
2002年 | 65篇 |
2001年 | 8篇 |
2000年 | 9篇 |
1999年 | 8篇 |
1998年 | 20篇 |
1997年 | 9篇 |
1996年 | 6篇 |
1995年 | 14篇 |
1994年 | 3篇 |
1993年 | 9篇 |
1992年 | 7篇 |
1990年 | 3篇 |
1988年 | 1篇 |
排序方式: 共有2037条查询结果,搜索用时 15 毫秒
11.
Nucleic acid polymerases have evolved elaborate mechanisms that prevent incorporation of the non-cognate substrates, which are distinguished by both the base and the sugar moieties. While the mechanisms of substrate selection have been studied in single-subunit DNA and RNA polymerases (DNAPs and RNAPs, respectively), the determinants of substrate binding in the multisubunit RNAPs are not yet known. Molecular modeling of Thermus thermophilus RNAP-substrate NTP complex identified a conserved beta' subunit Asn(737) residue in the active site that could play an essential role in selection of the substrate ribose. We utilized the Escherichia coli RNAP model system to assess this prediction. Functional in vitro analysis demonstrates that the substitutions of the corresponding beta' Asn(458) residue lead to the loss of discrimination between ribo- and deoxyribonucleotide substrates as well as to defects in RNA chain extension. Thus, in contrast to the mechanism utilized by the single-subunit T7 RNAP where substrate selection commences in the inactive pre-insertion site prior to its delivery to the catalytic center, the bacterial RNAPs likely recognize the sugar moiety in the active (insertion) site. 相似文献
12.
Simon BA Easley RB Grigoryev DN Ma SF Ye SQ Lavoie T Tuder RM Garcia JG 《American journal of physiology. Lung cellular and molecular physiology》2006,291(5):L851-L861
Human acute lung injury is characterized by heterogeneous tissue involvement, leading to the potential for extremes of mechanical stress and tissue injury when mechanical ventilation, required to support critically ill patients, is employed. Our goal was to establish whether regional cellular responses to these disparate local mechanical conditions could be determined as a novel approach toward understanding the mechanism of development of ventilator-associated lung injury. We utilized cross-species genomic microarrays in a unilateral model of ventilator-associated lung injury in anesthetized dogs to assess regional cellular responses to local mechanical conditions that potentially contribute pathogenic mechanisms of injury. Highly significant regional differences in gene expression were observed between lung apex/base regions as well as between gravitationally dependent/nondependent regions of the base, with 367 and 1,544 genes differentially regulated between these regions, respectively. Major functional groupings of differentially regulated genes included inflammation and immune responses, cell proliferation, adhesion, signaling, and apoptosis. Expression of genes encoding both acute lung injury-associated inflammatory cytokines and protective acute response genes were markedly different in the nondependent compared with the dependent regions of the lung base. We conclude that there are significant differences in the local responses to stress within the lung, and consequently, insights into the cellular responses that contribute to ventilator-associated lung injury development must be sought in the context of the mechanical heterogeneity that characterizes this syndrome. 相似文献
13.
Adrenergic receptor density in brown adipose tissue of active and hibernating hamsters and ground squirrels 总被引:1,自引:0,他引:1
Kramarova LI Bronnikov GE Ignat'ev DA Cannon B Nedergaard J 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(3):408-414
The ligand-binding characteristics (B(max) and K(D)) of alpha(1)- and beta(1)/beta(2)-adrenoceptors were investigated in membranes prepared from brown adipose tissue (BAT) of warm-acclimated, cold-acclimated, hibernating and arousing ground squirrels (Spermophillus undulatus) and hamsters (Mesocricetus auratus) by specific binding of [(3)H]prazosin and [(3)H]CGP-12177, respectively. The physiological state did not change the affinity for the adrenoceptors in the BAT of ground squirrels and hamsters. There was a significant decrease in alpha(1)-receptor density in arousing ground squirrels and a significant decrease in beta(1)/beta(2) density in hibernating ground squirrels. The level of alpha(1)-receptors was in all conditions higher than that of beta(1)/beta(2) receptors. The results indicate a possible change in balance of adrenoceptor density in the processes of cold acclimation, hibernation and arousal. The balance between the various adrenoceptor subtypes may be important for the final effect of catecholamines in BAT in different physiological states. 相似文献
14.
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions. 相似文献
15.
Eugene G. Maksimov Nikolai N. Sluchanko Kirill S. Mironov Evgeny A. Shirshin Konstantin E. Klementiev Georgy V. Tsoraev Marcus Moldenhauer Thomas Friedrich Dmitry A. Los Suleyman I. Allakhverdiev Vladimir Z. Paschenko Andrew B. Rubin 《Biophysical journal》2017,112(1):46-56
Orange carotenoid protein (OCP), responsible for the photoprotection of the cyanobacterial photosynthetic apparatus under excessive light conditions, undergoes significant rearrangements upon photoconversion and transits from the stable orange to the signaling red state. This is thought to involve a 12-Å translocation of the carotenoid cofactor and separation of the N- and C-terminal protein domains. Despite clear recent progress, the detailed mechanism of the OCP photoconversion and associated photoprotection remains elusive. Here, we labeled the OCP of Synechocystis with tetramethylrhodamine-maleimide (TMR) and obtained a photoactive OCP-TMR complex, the fluorescence of which was highly sensitive to the protein state, showing unprecedented contrast between the orange and red states and reflecting changes in protein conformation and the distances from TMR to the carotenoid throughout the photocycle. The OCP-TMR complex was sensitive to the light intensity, temperature, and viscosity of the solvent. Based on the observed Förster resonance energy transfer, we determined that upon photoconversion, the distance between TMR (donor) bound to a cysteine in the C-terminal domain and the carotenoid (acceptor) increased by 18 Å, with simultaneous translocation of the carotenoid into the N-terminal domain. Time-resolved fluorescence anisotropy revealed a significant decrease of the OCP rotation rate in the red state, indicating that the light-triggered conversion of the protein is accompanied by an increase of its hydrodynamic radius. Thus, our results support the idea of significant structural rearrangements of OCP, providing, to our knowledge, new insights into the structural rearrangements of OCP throughout the photocycle and a completely novel approach to the study of its photocycle and non-photochemical quenching. We suggest that this approach can be generally applied to other photoactive proteins. 相似文献
16.
17.
The mechanism of transduction of the phytochrome signal regulating the expression of succinate dehydrogenase in Arabidopsis has been investigated. Using the phytochrome mutants of Arabidopsis, it is demonstrated that the inhibition of succinate dehydrogenase in the light may result from the phytochrome A-dependent modulation of Ca2+ amount in the nuclear fraction of leaves. This leads to the activation of expression of the gene pif3 encoding the phytochrome-interacting factor PIF3, which binds to the promoter of the gene sdh1-2 encoding the SDHA subunit of succinate dehydrogenase and suppresses its expression. It is concluded that Ca2+ ions are involved in the phytochrome A-mediated inhibition of succinate dehydrogenase activity in the light. 相似文献
18.
Egor Y. Plotnikov Natalya V. Pulkova Irina B. Pevzner Ljubava D. Zorova Denis N. Silachev Maria A. Morosanova Gennady T. Sukhikh Dmitry B. Zorov 《Cytotherapy》2013,15(6):679-689
Background aimsAcute pyelonephritis is one of the most frequent infectious diseases of the urinary tract and a leading cause of kidney failure worldwide. One strategy for modulating excessive inflammatory responses in pyelonephritis is administration of mesenchymal multipotent stromal cells (MMSCs).MethodsThe putative protective effect of injection of MMSCs against experimental acute pyelonephritis was examined. We used in vivo experimental model of APN where bacteria are introduced in the bladder of rat. Three days after, intravenous injection of MMSCs was done. On the 7th day blood samples and kidneys were taken for further analysis.ResultsWe found obvious signs of oxidative stress and inflammation in the kidney in acute pyelonephritis in rats. Particularly, pro-inflammatory cytokine tumor necrosis factor-α levels, malondialdehyde, nitrite and myeloperoxidase activity were significantly increased. Histologic evaluation revealed numerous attributes of inflammation and tissue damage in the kidney. Treatment with MMSCs caused a remarkable decrease of all of these pathologic signs in renal tissue. Also, activated leukocytes induced pre-conditioning-like signaling in MMSCs. We showed alterations of expression or activity of inducible nitric oxide synthase, transforming growth factor-β, matrix metalloproteinase-2 and glycogen synthase kinase-3β, which could mediate immunomodulation and protective effects of MMSCs. This signaling could be characterized as inflammatory pre-conditioning.ConclusionsThe beneficial capacity of MMSCs to alleviate renal inflammation was more pronounced when pre-conditioned MMSCs were used. This approach could be used to prime MMSCs with different inflammatory modulators to enhance their engraftment and function in an immunoprotected fashion. 相似文献
19.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers. 相似文献
20.