全文获取类型
收费全文 | 101篇 |
免费 | 1篇 |
专业分类
102篇 |
出版年
2022年 | 1篇 |
2021年 | 3篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 14篇 |
2012年 | 5篇 |
2011年 | 2篇 |
2010年 | 9篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 5篇 |
2003年 | 4篇 |
2002年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1971年 | 3篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1967年 | 2篇 |
1965年 | 1篇 |
排序方式: 共有102条查询结果,搜索用时 15 毫秒
51.
A quickly growing number of characteristics reflecting various aspects of gene function and evolution can be either measured experimentally or computed from DNA and protein sequences. The study of pairwise correlations between such quantitative genomic variables as well as collective analysis of their interrelations by multidimensional methods have delivered crucial insights into the processes of molecular evolution. Here, we present a principal component analysis (PCA) of 16 genomic variables from Saccharomyces cerevisiae, the largest data set analyzed so far. Because many missing values and potential outliers hinder the direct calculation of principal components, we introduce the application of Bayesian PCA. We confirm some of the previously established correlations, such as evolutionary rate versus protein expression, and reveal new correlations such as those between translational efficiency, phosphorylation density, and protein age. Although the first principal component primarily contrasts genomic change and protein expression, the second component separates variables related to gene existence and expressed protein functions. Enrichment analysis on genes affecting variable correlations unveils classes of influential genes. For example, although ribosomal and nuclear transport genes make important contributions to the correlation between protein isoelectric point and molecular weight, protein synthesis and amino acid metabolism genes help cause the lack of significant correlation between propensity for gene loss and protein age. We present the novel Quagmire database (Quantitative Genomics Resource) which allows exploring relationships between more genomic variables in three model organisms-Escherichia coli, S. cerevisiae, and Homo sapiens (http://webclu.bio.wzw.tum.de:18080/quagmire). 相似文献
52.
53.
Stefanie Kaufmann Christiane Fuchs Mariya Gonik Ekaterina E. Khrameeva Andrey A. Mironov Dmitrij Frishman 《PloS one》2015,10(5)
The recent advent of conformation capture techniques has provided unprecedented insights into the spatial organization of chromatin. We present a large-scale investigation of the inter-chromosomal segment and gene contact networks in embryonic stem cells of two mammalian organisms: humans and mice. Both interaction networks are characterized by a high degree of clustering of genome regions and the existence of hubs. Both genomes exhibit similar structural characteristics such as increased flexibility of certain Y chromosome regions and co-localization of centromere-proximal regions. Spatial proximity is correlated with the functional similarity of genes in both species. We also found a significant association between spatial proximity and the co-expression of genes in the human genome. The structural properties of chromatin are also species specific, including the presence of two highly interactive regions in mouse chromatin and an increased contact density on short, gene-rich human chromosomes, thereby indicating their central nuclear position. Trans-interacting segments are enriched in active marks in human and had no distinct feature profile in mouse. Thus, in contrast to interactions within individual chromosomes, the inter-chromosomal interactions in human and mouse embryonic stem cells do not appear to be conserved. 相似文献
54.
Marc?N?Offman Ramil?N?Nurtdinov Mikhail?S?Gelfand Dmitrij?FrishmanEmail author 《BMC bioinformatics》2004,5(1):41
Background
Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions. 相似文献55.
56.
For over 2 decades, continuous efforts to organize the jungle of available protein structures have been underway. Although a number of discrepancies between different classification approaches for soluble proteins have been reported, the classification of membrane proteins has so far not been comparatively studied because of the limited amount of available structural data. Here, we present an analysis of α‐helical membrane protein classification in the SCOP and CATH databases. In the current set of 63 α‐helical membrane protein chains having between 1 and 13 transmembrane helices, we observed a number of differently classified proteins both regarding their domain and fold assignment. The majority of all discrepancies affect single transmembrane helix, two helix hairpin, and four helix bundle domains, while domains with more than five helices are mostly classified consistently between SCOP and CATH. It thus appears that the structural constraints imposed by the lipid bilayer complicate the classification of membrane proteins with only few membrane‐spanning regions. This problem seems to be specific for membrane proteins as soluble four helix bundles, not restrained by the membrane, are more consistently classified by SCOP and CATH. Our findings indicate that the structural space of small membrane helix bundles is highly continuous such that even minor differences in individual classification procedures may lead to a significantly different classification. Membrane proteins with few helices and limited structural diversity only seem to be reasonably classifiable if the definition of a fold is adapted to include more fine‐grained structural features such as helix–helix interactions and reentrant regions. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
57.
58.
A measuring complex including microscope-photometer and computer is described to be used for scanning of a sample inside of an arbitrary contour. The complex is supplied with a television channel for simultaneous control of the sample and photometric diaphragm, and also with a manual manipulator for setting the boundaries of the informational zone. At the end of scanning the cytophotometric and morphometric data are registered. 相似文献
59.
Despite rapidly increasing numbers of available 3D structures, membrane proteins still account for less than 1% of all structures in the Protein Data Bank. Recent high-resolution structures indicate a clearly broader structural diversity of membrane proteins than initially anticipated, motivating the development of reliable structure prediction methods specifically tailored for this class of molecules. One important prediction target capturing all major aspects of a protein's 3D structure is its contact map. Our analysis shows that computational methods trained to predict residue contacts in globular proteins perform poorly when applied to membrane proteins. We have recently published a method to identify interacting alpha-helices in membrane proteins based on the analysis of coevolving residues in predicted transmembrane regions. Here, we present a substantially improved algorithm for the same problem, which uses a newly developed neural network approach to predict helix-helix contacts. In addition to the input features commonly used for contact prediction of soluble proteins, such as windowed residue profiles and residue distance in the sequence, our network also incorporates features that apply to membrane proteins only, such as residue position within the transmembrane segment and its orientation toward the lipophilic environment. The obtained neural network can predict contacts between residues in transmembrane segments with nearly 26% accuracy. It is therefore the first published contact predictor developed specifically for membrane proteins performing with equal accuracy to state-of-the-art contact predictors available for soluble proteins. The predicted helix-helix contacts were employed in a second step to identify interacting helices. For our dataset consisting of 62 membrane proteins of solved structure, we gained an accuracy of 78.1%. Because the reliable prediction of helix interaction patterns is an important step in the classification and prediction of membrane protein folds, our method will be a helpful tool in compiling a structural census of membrane proteins. 相似文献
60.
Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity, reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new approach to enhance our comprehensive structural classification of α-helical membrane proteins (CAMPS), which is primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the evolutionary tendency to re-use already available folds is more pronounced. 相似文献