首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   87篇
  2023年   2篇
  2022年   11篇
  2021年   22篇
  2020年   14篇
  2019年   13篇
  2018年   29篇
  2017年   9篇
  2016年   19篇
  2015年   38篇
  2014年   61篇
  2013年   89篇
  2012年   99篇
  2011年   72篇
  2010年   53篇
  2009年   61篇
  2008年   91篇
  2007年   93篇
  2006年   80篇
  2005年   77篇
  2004年   59篇
  2003年   75篇
  2002年   57篇
  2001年   9篇
  2000年   5篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有1239条查询结果,搜索用时 31 毫秒
961.
The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency.  相似文献   
962.
963.
964.
ABCA1 is a key element of cellular cholesterol homeostasis. ApoE K/O mice fed with high-fat diet were infused with anti-ABCA1 antibody or control IgM. Infusion of anti-ABCA1 antibody led to 72% increase in the area of atherosclerotic plaque in aorta. After 16 weeks on high-fat diet plasma level of high density lipoprotein cholesterol (HDL-C) was reduced in control group, but was unchanged in mice infused with anti-ABCA1 antibody. Total plasma cholesterol level was elevated while the capacity of plasma to support cholesterol efflux ex vivo was reduced after 16 weeks on high-fat diet; the effects were similar in the two groups. We conclude that functional blocking of ABCA1-dependent cholesterol efflux stimulates development of atherosclerosis in apoE K/O mice independently from HDL-C levels.  相似文献   
965.
Kuo CL  Zaykin DV 《Genetics》2011,189(1):329-340
In recent years, genome-wide association studies (GWAS) have uncovered a large number of susceptibility variants. Nevertheless, GWAS findings provide only tentative evidence of association, and replication studies are required to establish their validity. Due to this uncertainty, researchers often focus on top-ranking SNPs, instead of considering strict significance thresholds to guide replication efforts. The number of SNPs for replication is often determined ad hoc. We show how the rank-based approach can be used for sample size allocation in GWAS as well as for deciding on a number of SNPs for replication. The basis of this approach is the "ranking probability": chances that at least j true associations will rank among top u SNPs, when SNPs are sorted by P-value. By employing simple but accurate approximations for ranking probabilities, we accommodate linkage disequilibrium (LD) and evaluate consequences of ignoring LD. Further, we relate ranking probabilities to the proportion of false discoveries among top u SNPs. A study-specific proportion can be estimated from P-values, and its expected value can be predicted for study design applications.  相似文献   
966.
967.
Human lipoxygenases (LOXs) and their metabolites have a great impact on human homeostasis and are of interest for targeted drug design. This goal requires detailed knowledge of their structures and an understanding of structure-function relationship. At the moment, there are two complete crystal structures for mammalian LOX [rabbit 12/15LOX (r-12/15LOX) and human 5LOX (h-5LOX)] and a fragment of human 12LOX. The low-resolution structures in solution for various LOX isoforms have brought about controversial results. Here we explored the behavior of r-12/15LOX in aqueous solution under different conditions (salt and pH) by small-angle X-ray scattering (SAXS) and compared it with human platelet-type 12S-LOX (hp-12LOX) and h-5LOX. Thermodynamic calculations concerning the stability of molecular assemblies, thermal motion analysis [TLSMD (translation, libration, and screw rotation motion detection based on crystallographic temperature factor Bj)], and results of SAXS analyses brought about the following conclusions: (i) in contrast to its crystal structure, r-12/15LOX functions as a monomer that dominates in solution; (ii) it dimerizes at higher protein concentrations in the presence of salt and with increasing degree of motional freedom of the N-terminal PLAT domain, as suggested by the Y98,614 → R double mutant; (iii) in aqueous solutions, hp-12LOX is stable as a dimer, in contrast to h-5LOX and r-12/15LOX, which are monomeric; and (iv) all three mammalian isozymes show a high level of flexibility not only for the PLAT domain but also for other subdomains of the catalytic part in TLS (translation, libration, and screw rotation) analysis and hp-12LOX in SAXS.  相似文献   
968.
Ca2+ is known as a universal messenger mediating a wide variety of cellular processes, including cell death. In fact, this ion has been proposed as the ‘cell death master’, not only at the intracellular but also at the intercellular level. The most direct form of intercellular spread of cell death is mediated by gap junction channels. These channels have been shown to propagate cell death as well as cell survival signals between the cytoplasm of neighbouring cells, reflecting the dual role of Ca2+ signals, i.e. cell death versus survival. Its precursor, the unopposed hemichannel (half of a gap junction channel), has recently joined in as a toxic pore connecting the intracellular with the extracellular environment and allowing the passage of a range of substances. The biochemical nature of the so-called intercellular cell death molecule, transferred through gap junctions or released/taken up via hemichannels, remains elusive but several studies pinpoint Ca2+ itself or its messenger inositol trisphosphate as the responsible masters in crime. Although direct evidence is still lacking, indirect data including Ca2+ involvement in intercellular communication and cell death, and effects of intercellular communication on intracellular Ca2+ homeostasis, support this hypothesis. In addition, hemichannels and their molecular building blocks, connexin or pannexin proteins, may exert their effects on Ca2+-dependent cell death at the intracellular level, independently from their channel functions. This review provides a cutting edge overview of the current knowledge and underscores the intimate connection between intercellular communication, Ca2+ signalling and cell death.  相似文献   
969.
The montmorillonite-catalyzed reactions of D, L-ImpA with D, L-ImpU generates RNA-like oligomers. The structures of the dimers to pentamers were investigated and homochiral products were identified in greater amounts than would be expected if theoretical amounts of each were formed. The homochirality increased from 64% to 97% as the chain length increased from dimers to pentamers. Investigation of the effect of pH, occupancy of the interlayer space and the influence of various cations in the reaction provided further insight into physical process in the mechanism of the catalysis. A detailed analysis of dimers was carried out in view of there being key intermediates towards formation of higher oligomers. The study was extended to the synthesis of non-standard dimers including those formed with deoxy-ribonucleotides.  相似文献   
970.
Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007). However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enhances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号