首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   80篇
  2023年   2篇
  2022年   8篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   23篇
  2017年   3篇
  2016年   13篇
  2015年   35篇
  2014年   52篇
  2013年   83篇
  2012年   91篇
  2011年   67篇
  2010年   49篇
  2009年   59篇
  2008年   86篇
  2007年   90篇
  2006年   70篇
  2005年   74篇
  2004年   56篇
  2003年   66篇
  2002年   54篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1070条查询结果,搜索用时 109 毫秒
991.
Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B(0) transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B(0)-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms.  相似文献   
992.
One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8β. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.  相似文献   
993.
994.
The five ribosomal P-proteins, denoted P0-(P1-P2)2, constitute the stalk structure of the large subunit of eukaryotic ribosomes. In the yeast Saccharomyces cerevisiae, the group of P1 and P2 proteins is differentiated into subgroups that form two separate P1A-P2B and P1B-P2A heterodimers on the stalk. So far, structural studies on the P-proteins have not yielded any satisfactory information using either X-ray crystallography or NMR spectroscopy, and the structures of the ribosomal stalk and its individual constituents remain obscure. Here we outline a first, coarse-grained view of the P1A-P2B solution structure obtained by a combination of small-angle X-ray scattering and heteronuclear NMR spectroscopy. The complex has an elongated shape with a length of 10 nm and a cross section of approximately 2.5 nm. 15N NMR relaxation measurements establish that roughly 30% of the residues are present in highly flexible segments, which belong primarily to the linker region and the C-terminal part of the polypeptide chain. Secondary structure predictions and NMR chemical shift analysis, together with previous results from CD spectroscopy, indicate that the structured regions involve alpha-helices. NMR relaxation data further suggest that several helices are arranged in a nearly parallel or antiparallel topology. These results provide the first structural comparison between eukaryotic P1 and P2 proteins and the prokaryotic L12 counterpart, revealing considerable differences in their overall shapes, despite similar functional roles and similar oligomeric arrangements. These results present for the first time a view of the structure of the eukaryotic stalk constituents, which is the only domain of the eukaryotic ribosome that has escaped successful structural characterization.  相似文献   
995.
B1 SINEs were studied in 22 families covering all major rodent lineages. The number of B1 copies considerably varies, from 1 x 10(4) in Geomyidae to 1 x 10(6) in Myodonta. B1 sequences can be divided into three main structural variants: B1 with a 20-bp tandem duplication (found in Gliridae, Sciuridae, and Aplodontidae), B1 with a 29-bp duplication (found in other families), and proto-B1 without duplication (pB1). These variants can be further subdivided according to their characters, including specific 7-, 9-, or 10-bp deletions. Different B1 subfamilies predominate in different rodent families. The analysis of B1 variants allowed us to propose possible pathways for the evolution of this SINE in the context of rodent evolution.  相似文献   
996.
997.
PURPOSE OF REVIEW: HDL is a recognized negative risk factor for the cardiovascular diseases. Establishing the genetic determinants of HDL concentration and functions would add to the prediction of cardiovascular risk and point to the biochemical mechanisms underlying this risk. The present review focuses on various approaches to establish genetic determinants of the HDL concentration, structure and function. RECENT FINDINGS: While many genes contribute to the HDL concentration and collectively account for half of the variability, polymorphism of individual candidate genes contributes little. There are strong interactions between environmental and genetic influences. Recent findings have confirmed that APOA1 and ABCA1 exert the strongest influence on HDL concentrations and risk of atherosclerosis. CETP and lipases also affect the HDL concentration and functionality, but their connection to the atherosclerosis risk is conditional on the interaction between environmental and genetic factors. SUMMARY: Analysis of genetic determinants of HDL-cholesterol in patients with specific disease states or in response to the environmental condition may be a more accurate way to assess variations in HDL concentration. This may result in defining the rules of interaction between genetic and environmental factors and lead to understanding the mechanisms responsible for the variations in HDL concentration and functionality.  相似文献   
998.
A new electro-optical (EO) approach was developed and applied to rapidly assay cell viability by using phage M13K07. Since phage M13K07 can replicate only in living bacteria and cannot replicate in the presence of inhibitors, the difference between the EO signals obtained in the presence and absence of the phage can be used as an important factor for evaluating cell viability. Variation in the electrophysical parameters of Escherichia coli XL-1 during its interaction with phage M13K07 was studied under exposure of the cells to various inhibitors of cellular metabolism. Significant changes in the EO signal were found during incubation of living E. coli cells with phage M13K07. At the same time, no changes were recorded during cell incubation with the phage after pretreatment of E. coli XL-1 cells with sodium azide, carbonyl cyanide 3-chlorophenyl hydrazone, chloramphenicol, and kanamycin. This finding can be explained by the decrease in the number of living cells in the culture after preliminary incubation with the chemical agents, and it was confirmed by colony counts by conventional plating onto solid LB medium before and after treatment of the cells with the inhibitors. The EO approach can be used as a rapid method for evaluation of the inhibitory effects of various chemical agents and drugs, and it has the potential for the study of the molecular mechanisms underlying cell death.  相似文献   
999.
Analysis of X-ray and neutron scattering from biomacromolecular solutions   总被引:3,自引:0,他引:3  
New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are presented. Small-angle scattering is rapidly becoming a streamline tool in structural molecular biology providing unique information about overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and assembly processes.  相似文献   
1000.
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world’s wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号