首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   79篇
  1071篇
  2023年   2篇
  2022年   9篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   23篇
  2017年   3篇
  2016年   13篇
  2015年   35篇
  2014年   52篇
  2013年   83篇
  2012年   91篇
  2011年   67篇
  2010年   49篇
  2009年   59篇
  2008年   86篇
  2007年   90篇
  2006年   70篇
  2005年   74篇
  2004年   56篇
  2003年   66篇
  2002年   54篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
961.
Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.  相似文献   
962.
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.  相似文献   
963.
The morphology of the coxa and trochanter was studied in 205 species from 68 fly families to compare these structures with respect to ability to fly in a streamlined posture, with the middle legs pointing forward and pressed to the thorax. Only Brachycera are able to attain this posture. The forward turn of the coxa at this position is hindered by the junction of the coxa with the pleuron. Recovery of mobility is gained in two ways. (1) By reduction of the contact zone between coxa and pleurite, as in Asiloidea, Bombyloidea, and Empidoidea. Within these flies, the streamlined posture was recorded in Bombyliidae and in a robber-fly, Laphria flava . Others fly with their middle legs straddled laterally or trailing backwards. (2) Longitudinal splitting of the coxa into three coxites provides intracoxal mobility in most Tabanoidea and Cyclorrhapha. The hind and medial coxites rotate about the front coxite and change the coxo-trochanteral axis, thus compensating for restricted protraction. Separation of the hind coxite appears in primitive Tabanoidea, and a separate middle coxite was found in several families among the Nematocera. The streamlined posture was recorded in horse-flies, stratiomyids, and in many Cyclorrhapha except Micropezidae and Hippoboscidae. There is morphological evidence for a possible secondary fusion of coxites at least in Dolichopodidae and Opetidae as well as for the origin of Cyclorrhapha from a miniature ancestor.  相似文献   
964.
965.
To be effective, antisense molecules should be stable in biological fluids, non-toxic, form stable and specific duplexes with target RNAs and readily penetrate through cell membranes without non-specific effects on cell function. We report herein that negatively charged DNA mimics representing chiral analogues of peptide nucleic acids with a constrained trans-4-hydroxy-N-acetylpyrrolidine-2-phosphonate backbone (pHypNAs) meet these criteria. To demonstrate this, we compared silencing potency of these compounds with that of previously evaluated as efficient gene knockdown molecules hetero-oligomers consisting of alternating phosphono-PNA monomers and PNA-like monomers based on trans-4-hydroxy-L-proline (HypNA-pPNAs). Antisense potential of pHypNA mimics was confirmed in a cell-free translation assay with firefly luciferase as well as in a living cell assay with green fluorescent protein. In both cases, the pHypNA antisense oligomers provided a specific knockdown of a target protein production. Confocal microscopy showed that pHypNAs, when transfected into living cells, demonstrated efficient cellular uptake with distribution in the cytosol and nucleus. Also, the high potency of pHypNAs for down-regulation of Ras-like GTPase Ras-dva in Xenopus embryos was demonstrated in comparison with phosphorodiamidate morpholino oligomers. Therefore, our data suggest that pHypNAs are novel antisense agents with potential widespread in vitro and in vivo applications in basic research involving live cells and intact organisms.  相似文献   
966.
The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor β-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10–40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo.  相似文献   
967.
968.
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.  相似文献   
969.
Human lipoxygenases (LOXs) and their metabolites have a great impact on human homeostasis and are of interest for targeted drug design. This goal requires detailed knowledge of their structures and an understanding of structure-function relationship. At the moment, there are two complete crystal structures for mammalian LOX [rabbit 12/15LOX (r-12/15LOX) and human 5LOX (h-5LOX)] and a fragment of human 12LOX. The low-resolution structures in solution for various LOX isoforms have brought about controversial results. Here we explored the behavior of r-12/15LOX in aqueous solution under different conditions (salt and pH) by small-angle X-ray scattering (SAXS) and compared it with human platelet-type 12S-LOX (hp-12LOX) and h-5LOX. Thermodynamic calculations concerning the stability of molecular assemblies, thermal motion analysis [TLSMD (translation, libration, and screw rotation motion detection based on crystallographic temperature factor Bj)], and results of SAXS analyses brought about the following conclusions: (i) in contrast to its crystal structure, r-12/15LOX functions as a monomer that dominates in solution; (ii) it dimerizes at higher protein concentrations in the presence of salt and with increasing degree of motional freedom of the N-terminal PLAT domain, as suggested by the Y98,614 → R double mutant; (iii) in aqueous solutions, hp-12LOX is stable as a dimer, in contrast to h-5LOX and r-12/15LOX, which are monomeric; and (iv) all three mammalian isozymes show a high level of flexibility not only for the PLAT domain but also for other subdomains of the catalytic part in TLS (translation, libration, and screw rotation) analysis and hp-12LOX in SAXS.  相似文献   
970.
Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1–3-like tracts present between subtelomeric X and Y′ elements, which is followed by BIR-mediated non-reciprocal translocation of Y′ element and terminal TG1–3 repeats from the donor end onto the shortened telomere. We found that choice of the Y′ donor was not random, since both engineered telomere VII-L and native VI-R acquired Y′ elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y′ translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1–3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y′ translocation events taking place during presenescence are genetically separable from Rad51-dependent Y′ amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y′ translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号