首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   34篇
  313篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   15篇
  2013年   16篇
  2012年   22篇
  2011年   17篇
  2010年   13篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   12篇
  2004年   8篇
  2003年   8篇
  2002年   11篇
  2001年   6篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   10篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1975年   1篇
  1972年   3篇
  1971年   4篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
71.
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.  相似文献   
72.
Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO2 ?), superoxide anion radical (O2 ??), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O2 ?? in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O2 ??, nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.  相似文献   
73.
74.
Bacterial chemotaxis receptors are posttranslationally modified by carboxyl methylation of specific glutamate residues within their cytoplasmic domains. This highly regulated, reversible modification counterbalances the signaling effects of ligand binding and contributes to adaptation. On the basis of the crystal structure of the gamma-glutamyl methyltransferase CheR, we have postulated that positively charged residues in helix alpha2 in the N-terminal domain of the enzyme may be complementary to the negatively charged methylation region of the methyltransferase substrates, the bacterial chemotaxis receptors. Several altered CheR proteins, in which positively charged arginine or lysine residues were substituted with alanines, were constructed and assayed for their methylation activities toward wild-type receptor and a series of receptor variants containing different glutamates available for methylation. One of the CheR mutant proteins (Arg53Ala) showed significantly lower activity toward all receptor constructs, suggesting that Arg53 may play a general role in catalysis of methyl transfer. The rest of the mutant proteins exhibited different patterns of relative methylation rates toward different receptor substrates, indicating specificity, probably through interaction of CheR with the receptor at sites distal to the specific site of methylation. The findings imply complementarity between positively charged residues of the alpha2 helix of CheR and the negatively charged glutamates of the receptor. It is likely that this complementarity is involved in discriminating different methylation states of the receptors.  相似文献   
75.
The virulence properties and serotypes of complex Shiga toxin-producing Escherichia coli (cSTEC) were determined in two studies of healthy cattle in eastern Australia. In the first, a snapshot study, 84 cSTEC isolates were recovered from 37 of 1,692 (2.2%) fecal samples collected from slaughter-age cattle from 72 commercial properties. The second, a longitudinal study of three feedlots and five pasture beef properties, resulted in the recovery of 118 cSTEC isolates from 104 animals. Of the 70 serotypes identified, 38 had not previously been reported.  相似文献   
76.
Lactococcus lactis is industrially important microorganism used in many dairy fermentations. Numerous genes and gene expression signals from this organism have now been identified and characterized. Recently, several naturally occurring, inducible gene-expression systems have also been described inL. lactis. The main features of these systems can be exploited to design genetically engineered expression cassettes for controlled production of various proteins and enzymes. Novel gene-expression systems inLactococcus have great potential for development of industrial cultures with desirable metabolic traits for a variety of bioprocessing applications.  相似文献   
77.
Douglas  SP; Kadler  KE 《Glycobiology》1998,8(10):1013-1019
Type IX collagen is a key component of the extracellular matrix of cartilage where it occurs at the surfaces of type II collagen fibrils as a glycanated molecule. The function of the glycosaminoglycan (GAG) side chain of the molecule is, however, unknown. We have shown that type IX collagen in chicken sternal cartilage is synthesized with a unimodal distribution of GAG chain size, but at post 17 days of development three predominant glycanforms of type IX collagen accumulate. Such accumulation did not occur in sterna from day 15 embryos. In day 17 embryos predominant glycanforms were found in the caudal region of the sternum. By day 19 of development the three predominant glycanforms are widespread throughout the caudal and cephalic regions. The results indicate that developmental and anatomical changes occur to type IX collagen that depend on the size of the GAG chain attached to the alpha2(IX) chain of the molecule.   相似文献   
78.
The protein expression profiles of Rhizobium leguminosarum strains in response to specific genetic perturbations in exopolysaccharide (EPS) biosynthesis genes were examined using two-dimensional gel electrophoresis. Lesions in either pssA, pssD, or pssE of R. leguminosarum bv. viciae VF39 or in pssA of R. leguminosarum bv. trifolii ANU794 not only abolished the capacity of these strains to synthesize EPS but also had a pleiotropic effect on protein synthesis levels. A minimum of 22 protein differences were observed for the two pssA mutant strains. The differences identified in the pssD and pssE mutants of strain VF39 were a distinct subset of the same protein synthesis changes that occurred in the pssA mutant. The pssD and pssE mutant strains shared identical alterations in the proteins synthesized, suggesting that they share a common function in the biosynthesis of EPS. In contrast, a pssC mutant that produces 38% of the EPS level of the parental strain showed no differences in its protein synthesis patterns, suggesting that the absence of EPS itself was contributing to the changes in protein synthesis and that there may be a complex interconnection of the EPS biosynthetic pathway with other metabolic pathways. Genetic complementation of pssA can restore wild-type protein synthesis levels, indicating that many of the observed differences in protein synthesis are also a specific response to a dysfunctional PssA. The relevance of these proteins, which are grouped as members of the pssA mutant stimulon, remains unclear, as the majority lacked a homologue in the current sequence databases and therefore possibly represent a novel functional network(s). These findings have illustrated the potential of proteomics to reveal unexpected higher-order processes of protein function and regulation that arise from mutation. In addition, it is evident that enzymatic pathways and regulatory networks are more interconnected and more sensitive to structural changes in the cell than is often appreciated. In these cases, linking the observed phenotype directly to the mutated gene can be misleading, as the phenotype could be attributable to downstream effects of the mutation.  相似文献   
79.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H-, O8:H19, O26:H-, O26:H11, O113:H21, O157:H7, O157:H- and Ont:H- which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H- and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H- representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.  相似文献   
80.
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号