首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   34篇
  313篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   15篇
  2013年   16篇
  2012年   22篇
  2011年   17篇
  2010年   13篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   12篇
  2004年   8篇
  2003年   8篇
  2002年   11篇
  2001年   6篇
  2000年   12篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   10篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1975年   1篇
  1972年   3篇
  1971年   4篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
111.
The positive activation of several nodulation genes in strain ANU843 of Rhizobium leguminosarum biovar trifolii is mediated by the product of the nodD gene and by the interaction of NodD with plant-secreted inducer and anti-inducer compounds. We have mutagenized the nodD gene of strain ANU843 with nitrosoguanidine and have found that the ability of the mutated nodD products to interact with inducer and anti-inducer compounds is affected by the amino acid sequence in at least two key regions, including a novel area between amino acids 77 and 123. Several novel classes of mutants were recognized by phenotypic and molecular analysis of the mutant nodD genes. Classes 1 and 4 mutants were able to induce nodA expression independently of the addition of inducer and anti-inducer compounds and were unable to mediate autoregulation of the nodD gene. Classes 2 and 3 mutants retained several properties of the wild-type nodD, including the ability to interact with inducer and anti-inducer compounds and the capacity to autoregulate nodD expression. In addition, class 2 mutants showed an inducer-independent ability to mediate nodA expression to 10-fold higher levels over control strains. The class 3 mutant showed reactivity to compounds that had little or no inducing ability with the wild-type nodD. An alteration in NodD function was demonstrated with classes 2 and 3 mutants, which showed greatly enhanced ability to complement a Tn5-induced mutation in the nodD1 gene of strain NGR234 and to restore nodulation ability on the tropical legume siratro. Mutants of nodD possessing inducer-independent ability to activate nod gene expression (classes 1, 2, and 4) were capable of extending the host range of R. l. bv. trifolii to the nonlegume Parasponia. DNA sequence analysis showed that single base changes were responsible for the altered phenotypic properties of five of six mutants examined. Four of the six mutations affected amino acid residues in a putative receiver domain in the N-terminal end of the nodD protein.  相似文献   
112.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain.  相似文献   
113.

Background

Cryptococcus neoformans is the commonest cause of fungal meningitis, with a substantial mortality despite appropriate therapy. Quantitative culture of cryptococci in cerebrospinal fluid (CSF) during antifungal therapy is of prognostic value and has therapeutic implications, but is slow and not practicable in many resource-poor countries.

Methods

We piloted two rapid techniques for quantifying viable cryptococci using mixtures of live and heat-killed cryptococci cultured in vitro: (i) quantitative microscopy with exclusion staining using trypan blue dye, and (ii) flow cytometry, using the fluorescent dye 2′-7′-Bis-(2-carboxyethyl)-5-(6)-carboxyfluorescein, acetoxymethyl ester (BCECF-AM). Results were compared with standard quantitative cryptococcal cultures. Quantitative microscopy was also performed on cerebrospinal fluid (CSF) samples.

Results

Both microscopy and flow cytometry distinguished between viable and non-viable cryptococci. Cell counting (on log scale) by microscopy and by quantitative culture were significantly linearly associated (p<0.0001) and Bland-Altman analysis showed a high level of agreement. Proportions of viable cells (on logit scale), as detected by flow cytometry were significantly linearly associated with proportions detected by microscopy (p<0.0001) and Bland-Altman analysis showed a high level of agreement.

Conclusions

Direct microscopic examination of trypan blue-stained cryptococci and flow-cytometric assessment of BCECF-AM-stained cryptococci were in good agreement with quantitative cultures. These are promising strategies for rapid determination of the viability of cryptococci, and should be investigated in clinical practice.  相似文献   
114.
The root apical meristem (RAM) is responsible for the growth of the plant root system. Because of the importance of root architecture in the performance of crop plants, we established a proteome reference map of the soybean root apex and compared this with the proteome of the differentiated root zone. The root apex samples contained the apical 1?mm of the root, comprising the RAM, quiescent center and root cap. We identified 342 protein spots from 550 excised proteins (~62%) of root apex samples by MALDI-TOF MS/MS analysis. All these proteins were also present in the differentiated root, but differed in abundance. Functional classification showed that the most numerous protein categories represented in the root were those of stress response, glycolysis, redox homeostasis and protein processing. Using DIGE, we identified 73 differentially accumulated proteins between root apex and differentiated root. Proteins overrepresented in the root apex belonged primarily to the pathways for protein synthesis and processing, cell redox homeostasis and flavonoid biosynthesis. Proteins underrepresented in the root apex were those of glycolysis, tricarboxylic acid metabolism and stress response. Our results highlight the importance of stress and defense response, redox control and flavonoid metabolism in the root apex.  相似文献   
115.
Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.  相似文献   
116.
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.  相似文献   
117.
The cell wall of pathogenic fungi such as Cryptococcus neoformans , provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the i SEC6 strain. In addition, a green fluorescent protein–laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in i SEC6 strains. In contrast, i SEC6 strains retained normal growth at 37°C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans .  相似文献   
118.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   
119.
Summary Three distinct loci (designated regions III, IV and V) were identified in the 14 kb Nod region of Rhizobium trifolii strain ANU843 and were found to determine the host range characteristics of this strain. Deletion of region III or region V only from the 14 kb Nod region affected clover nodulation capacity. The introduction to R. Leguminosarum of DNA fragments on multicopy vectors carrying regions III, IV and V (but not smaller fragments) extended the host range of R. leguminosarum so that infection threads and nodules occurred on white clover plants. The same DNA fragments were introduced to the Sym plasmid-cured strain (ANU845) carrying the R. meliloti recombinant nodulation plasmid pRmSL26. Plasmid pRmSL26 alone does not confer root hair curling or nodulation on clover plants. However, the introduction to ANU845 (pRmSL26) of a 1.4 kb fragment carrying R. trifolii region IV only, resulted in the phenotypic activation of marked root hair curling ability to this strain on clovers but no infection events or nodules resulted. Only the transfer of regions III, IV and V to strain ANU845 (pRmSL26) conferred normal nodulation and host range ability of the original wild type R. trifolii strain. These results indicate that the host range genes determine the outcome of early plant-bacterial interactions primarily at the stage of root hair curling and infection.  相似文献   
120.
P97 and P102 paralogues occur as endoproteolytic cleavage fragments on the surface of Mycoplasma hyopneumoniae that bind glycosaminoglycans, plasminogen, and fibronectin and perform essential roles in colonization of ciliated epithelia. We show that the P102 paralogue Mhp384 is efficiently cleaved at an S/T-X-F↓X-D/E-like site, creating P60(384) and P50(384). The P97 paralogue Mhp385 is inefficiently cleaved, with tryptic peptides from a 115 kDa protein (P115(385)) and 88 kDa (P88(385)) and 27 kDa (P27(385)) cleavage fragments identified by LC-MS/MS. This is the first time a preprotein belonging to the P97 and P102 paralogue families has been identified by mass spectrometry. The semitryptic peptide (752)IQFELEPISLNV(763) denotes the C-terminus of P88(385) and defines the novel cleavage site (761)L-N-V↓A-V-S(766) in Mhp385. P115(385), P88(385), P27(385), P60(384), and P50(384) were shown to reside extracellularly, though it is unknown how the fragments remain attached to the cell surface. Heparin- and cilium-binding sites were identified within P60(384), P50(384), and P88(385). No primary function was attributed to P27(385); however, this molecule contains four tandem R1 repeats with similarity to porcine collagen type VI (α3 chain). P97 and P102 paralogue families are adhesins targeted by several proteases with different cleavage efficiencies, and this process generates combinatorial complexity on the surface of M. hyopneumoniae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号