首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
31.
 The hallmark of the classical major histocompatibility complex (MHC) class I molecules is their astonishing level of polymorphism, a characteristic not shared by the nonclassical MHC class I genes. A distinct family of MHC class I genes has been recently identified within the human MHC class I region. The MICA (MHC class I chain-related A) gene in this family is a highly divergent member of the MHC class I family and has a unique pattern of tissue expression. We have sequenced exons encoding the extracellular α1, α2, and α3 domains of the MICA gene from twenty HLA homozygous typing cell lines and four unrelated individuals. We report the identification of eleven new alleles defined by a total of twenty-two amino acid substitutions. Thus, the total number of MICA alleles is sixteen. Interestingly, a tentative superimposition of MICA variable residues on the HLA-A2 structure reveals a unique pattern of distribution, concentrated primarily on the outer edge of the MICA putative antigen binding cleft, apparently bordering an invariant ligand binding site. Received: 13 May 1996 / Revised: 29 May 1996  相似文献   
32.
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce “mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.  相似文献   
33.
34.
Native to Japan, Fallopia japonica, most frequently referred to as Japanese knotweed, is a highly problematic invasive weed, particularly in the UK and North America. During surveys for natural enemies of this plant in Japan, two species of Mycosphaerella were collected. One of these was identified as M. polygoni-cuspidati, and is redescribed and neotypified. Causing a damaging leaf spot disease of F. japonica throughout its natural range in Japan, it is absent from the host’s exotic range. The restriction of M. polygoni-cuspidati to F. japonica in its center of origin, together with its severe impact on host fitness, indicates that this is a coevolved natural enemy with high potential as a classical biological control agent for the long-term management of this ecologically and economically important weed. In the field, the fungus has a reduced life cycle, with only spermogonia and pseudothecia (ascomata) being formed. Ascospores are the primary source of infection, and studies show that the mycelium from in vitro cultures is also infective and hyphae penetrate mainly via the stomata. A further, undescribed species of Mycosphaerella co-occurs with M. polygoni-cuspidati, here proposed as the new species M. shimabarensis. Both species have been studied using cultural, morphological and molecular phylogenetic methods.  相似文献   
35.
36.
During the breeding season, a major androgen-dependent protein with an apparent molecular weight of 21 kDa was isolated and purified from the seminal vesicles of three Saharan rodents (MLVSP21 from Meriones libycus, MSVSP21 from Meriones shawi, and MCVSP21 from Meriones crassus). The 21-kDa protein was isolated and purified from soluble seminal vesicle proteins of homogenate by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Using polyclonal antibodies directed against POSVP21 (Psammomys obesus seminal vesicles protein of 21 kDa), a major androgen-dependent secretory protein from sand rat seminal vesicles, identified previously as transgelin, we showed an immunological homology with POSVP21 by immunoblotting. These three major androgen-dependent proteins with a same apparent molecular weight of 21 kDa designated as MLVSP21 (Meriones libycus seminal vesicles protein of 21 kDa), MSVSP21 (Meriones shawi seminal vesicles protein of 21 kDa), and MCVSP21 (Meriones crassus seminal vesicles protein of 21 kDa) were localized by immunohistochemistry and identified by applying a proteomic approach. Our results indicated that the isolated proteins MLSVP21, MSSVP21, and MCSVP21 seem to correspond to the same protein: the transgelin. So that transgelin can be used as a specific marker of these rodent physiological reproduction mechanisms.  相似文献   
37.
Thiomonas arsenitoxydans is an acidophilic and facultatively autotrophic bacterium that can grow by oxidizing arsenite to arsenate. A comparative genomic analysis showed that the T. arsenitoxydans aioBA cluster encoding the two subunits of arsenite oxidase is distinct from the other clusters, with two specific genes encoding a cytochrome c and a metalloregulator belonging to the ArsR/SmtB family. These genes are cotranscribed with aioBA, suggesting that these cytochromes c are involved in arsenite oxidation and that this operon is controlled by the metalloregulator. The growth of T. arsenitoxydans in the presence of thiosulfate and arsenite, or arsenate, is biphasic. Real-time PCR experiments showed that the operon is transcribed during the second growth phase in the presence of arsenite or arsenate, whereas antimonite had no effect. These results suggest that the expression of the aioBA operon of T. arsenitoxydans is regulated by the electron donor present in the medium, i.e., is induced in the presence of arsenic but is repressed by more energetic substrates. Our data indicate that the genetic organization and regulation of the aioBA operon of T. arsenitoxydans differ from those of the other arsenite oxidizers.  相似文献   
38.
In order to study the effects of soil factors and bacterial inoculation on alfalfa (Medicago sativa), plants were inoculated with Ensifer meliloti L33 and Azospirillum brasilense Sp7 in pot experiments using two different soils separately as well as in a mixture. One soil was contaminated with chemical waste products; the other was an arable soil. Soil factors, including the availability of macro- and micronutrients as well as carbon and nitrogen contents, were found to exhibit a much greater influence on the growth of alfalfa than any of the inoculations. In contaminated soil, the shoot and root growth of alfalfa was decreased and nodules were diminished and ineffective. Bacterial inoculations did not significantly improve this hostile growth environment. However, in a mixture (44% arable, 22% contaminated soil, 34% vermiculite), growth conditions for alfalfa were improved so that shoot dry weight and nodule numbers increased up to 100- and 20-fold, respectively, compared with the contaminated soil. For the strain L33, its persistence in the rhizosphere was correlated to the presence of its host plant, but its dynamics were influenced by competition with indigenous rhizobia. The strain Sp7, once provided with a suitable soil, was not dependent on the plant's rhizosphere, but it enhanced the performance of L33 and native rhizobia.  相似文献   
39.
40.
Total extracted DNA from two heavily polychlorobiphenyl-contaminated soils was analyzed with respect to biphenyl dioxygenase sequences and activities. This was done by PCR amplification and cloning of a DNA segment encoding the active site of the enzyme. The translated sequences obtained fell into three similarity clusters (I to III). Sequence identities were high within but moderate or low between the clusters. Members of clusters I and II showed high sequence similarities with well-known biphenyl dioxygenases. Cluster III showed low (43%) sequence identity with a biphenyl dioxygenase from Rhodococcus jostii RHA1. Amplicons from the three clusters were used to reconstitute and express complete biphenyl dioxygenase operons. In most cases, the resulting hybrid dioxygenases were detected in cell extracts of the recombinant hosts. At least 83% of these enzymes were catalytically active. Several amino acid exchanges were identified that critically affected activity. Chlorobiphenyl turnover by the enzymes containing the prototype sequences of clusters I and II was characterized with 10 congeners that were major, minor, or not constituents of the contaminated soils. No direct correlations were observed between on-site concentrations and rates of productive dioxygenations of these chlorobiphenyls. The prototype enzymes displayed markedly different substrate and product ranges. The cluster II dioxygenase possessed a broader substrate spectrum toward the assayed congeners, whereas the cluster I enzyme was superior in the attack of ortho-chlorinated aromatic rings. These results demonstrate the feasibility of the applied approach to functionally characterize dioxygenase activities of soil metagenomes via amplification of incomplete genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号