首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2653篇
  免费   341篇
  国内免费   2篇
  2996篇
  2021年   23篇
  2018年   28篇
  2017年   21篇
  2016年   48篇
  2015年   53篇
  2014年   61篇
  2013年   101篇
  2012年   87篇
  2011年   88篇
  2010年   70篇
  2009年   71篇
  2008年   87篇
  2007年   85篇
  2006年   85篇
  2005年   94篇
  2004年   84篇
  2003年   82篇
  2002年   96篇
  2001年   90篇
  2000年   98篇
  1999年   70篇
  1998年   50篇
  1997年   36篇
  1996年   39篇
  1995年   38篇
  1994年   49篇
  1993年   38篇
  1992年   70篇
  1991年   57篇
  1990年   90篇
  1989年   81篇
  1988年   54篇
  1987年   62篇
  1986年   50篇
  1985年   46篇
  1984年   41篇
  1983年   34篇
  1982年   27篇
  1981年   27篇
  1980年   23篇
  1979年   40篇
  1978年   24篇
  1977年   30篇
  1976年   24篇
  1973年   32篇
  1972年   34篇
  1971年   37篇
  1970年   26篇
  1969年   30篇
  1968年   24篇
排序方式: 共有2996条查询结果,搜索用时 0 毫秒
81.
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.  相似文献   
82.
AIMS: To evaluate the efficacy of a stabilized oxychloro-based (SOC) sanitizer to decontaminate mung beans artificially or naturally contaminated with Escherichia coli O157:H7 or Salmonella. METHODS AND RESULTS: Naturally contaminated beans were produced by introducing a five-strain cocktail of E. coli O157:H7 or Salmonella onto the flowers of growing mung bean plants. Escherichia coli O157:H7 was only sporadically recovered from sprout lots (three testing positive from 10 tested) derived from harvested beans. In contrast, Salmonella was recovered from 18 of 20 lots screened. Pathogens present on naturally contaminated seed could be successfully inactivated with SOC applied at 200 ppm for 24 h at 28 degrees C. SOC treatment could also decontaminate artificially inoculated mung bean batches containing different levels of contaminated seed. SOC inactivated E. coli O157:H7, but not Salmonella introduced onto damaged (scarified) beans. CONCLUSIONS: SOC sanitizer could inactivate Salmonella or E. coli O157:H7 naturally or artificially introduced onto mung beans. However, the SOC treatment failed to inactivate Salmonella introduced onto damaged mung beans. SIGNIFICANCE AND IMPACT OF THE STUDY: SOC sanitizer represents an effective method for decontaminating undamaged mung beans.  相似文献   
83.
84.
Ten isolates of six species of ectomycorrhizal fungi were grown in vitro at nine concentrations of three sodium salts (NaCl, Na2SO4, Na3C6H5O7) for 4 weeks. Colony diamater, biomass and protein content of fungi were evaluated. Isolates of Pisolithus tinctorius and Suillus luteus were more tolerant of NaCl and Na2SO4 than of Na3C6H5O7. Fungi in the genera Cenococcum, Laccaria, and Thelephora were highly intolerant of Na3C6H5O7 and Na2SO4 in vitro. Biomass and protein content of fungi generally declined with increasing substrate salinity in solution culture. In situ ectomycorrhizal colonization by Laccara laccata and P. tinctorius and the dry weight of Pinus taeda seedlings were significantly reduced by 80 mM NaCl after 14 weeks. Only select ectomycorrhizal fungi appear capable of growth and symbiosis in saline soils.  相似文献   
85.
The cleavage of septal peptidoglycan at the end of cell division facilitates the separation of the two daughter cells. The hydrolases involved in this process (called autolysins) are potentially lethal enzymes that can cause cell death; their activity, therefore, must be tightly controlled during cell growth. In Enterococcus faecalis, the N-acetylglucosaminidase AtlA plays a predominant role in cell separation. atlA mutants form long cell chains and are significantly less virulent in the zebrafish model of infection. The attenuated virulence of atlA mutants is underpinned by a limited dissemination of bacterial chains in the host organism and a more efficient uptake by phagocytes that clear the infection. AtlA has structural homologs in other important pathogens, such as Listeria monocytogenes and Salmonella typhimurium, and therefore represents an attractive model to design new inhibitors of bacterial pathogenesis. Here, we provide a 1.45 Å crystal structure of the E. faecalis AtlA catalytic domain that reveals a closed conformation of a conserved β-hairpin and a complex network of hydrogen bonds that bring two catalytic residues to the ideal distance for an inverting mechanism. Based on the model of the AtlA–substrate complex, we identify key residues critical for substrate recognition and septum cleavage during bacterial growth. We propose that this work will provide useful information for the rational design of specific inhibitors targeting this enterococcal virulence factor and its orthologs in other pathogens.  相似文献   
86.
The genetic diversity of a clonal sedge (Tertraria capillaris) was assessed using isozyme analysis of 11 loci. Of 29 enzyme systems tested, eight were selected which gave interpretable bands with consistently good resolution. Though seedlings of the species are rarely observed in nature, isozyme analysis showed that for the study transects containing 100 sample plants, the majority of plants at the site were sexually rather than clonally derived. Young plants generated from embryos grown in vitro from excised seeds showed a high level of genetic diversity which could account for the genetic diversity measured in the parent population. In terms of restoration of the species, 85% of the assessed genetic diversity at the study site could be retained if 25 T. capillaris plants were taken at random. The study illustrates how genetic assessment coupled with tissue culture methods provides a feasible model for the recovery of most of the assessed local genetic diversity of a clonal species.  相似文献   
87.
88.
89.
90.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号