首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   36篇
  国内免费   1篇
  625篇
  2024年   1篇
  2023年   8篇
  2022年   21篇
  2021年   40篇
  2020年   18篇
  2019年   17篇
  2018年   27篇
  2017年   18篇
  2016年   25篇
  2015年   35篇
  2014年   42篇
  2013年   52篇
  2012年   70篇
  2011年   58篇
  2010年   33篇
  2009年   31篇
  2008年   35篇
  2007年   27篇
  2006年   20篇
  2005年   14篇
  2004年   10篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有625条查询结果,搜索用时 15 毫秒
111.
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets.  相似文献   
112.
113.
International Journal of Peptide Research and Therapeutics - Biofilm forming pathogens are among the major causes of hospital-acquired infections and are not much affected by antibiotic treatment....  相似文献   
114.
A urea class of high affinity niacin receptor agonists was discovered. Compound 1a displayed good PK, better in vivo efficacy in reducing FFA in mouse than niacin, and no vasodilation in a mouse model. Compound 1q demonstrated equal affinity to GPR109A as niacin.  相似文献   
115.
116.
Root knot nematode, Meloidogyne incognita, is an obligate sedentary endoparasite that infects a large number of crop species and causes substantial yield losses. Non-chemical based control strategies for these nematodes are gaining importance. In the present study, we have demonstrated the significance of two FMRFamide like peptide genes (flp-14 and flp-18) for infection and development of resistance to M. incognita through host-derived RNAi. The study demonstrated both in vitro and in planta validation of RNAi-induced silencing of the two genes cloned from J2 stage of M. incognita. In vitro silencing of both the genes interfered with nematode migration towards the host roots and subsequent invasion into the roots. Transgenic tobacco lines were developed with RNAi constructs of flp-14 and flp-18 and evaluated against M. incognita. The transformed plants did not show any visible phenotypic variations suggesting the absence of any off-target effects. Bioefficacy studies with deliberate challenging of M. incognita resulted in 50-80% reduction in infection and multiplication confirming the silencing effect. We have provided evidence for in vitro and in planta silencing of the genes by expression analysis using qRT-PCR. Thus the identified genes and the strategy can be used as a potential tool for the control of M. incognita. This is the first ever report that has revealed the utility of host delivered RNAi of flps to control M. incognita. The strategy can also be extended to other crops and nematodes.  相似文献   
117.
The 5‐HT3 receptor is a pentameric serotonin‐gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti‐emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5‐HT3 receptor. In the serotonin‐bound structure, we observe hydrophilic interactions with loop E‐binding site residues, which might enable transitions to channel opening. In the granisetron‐bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5‐HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high‐affinity ligand binding in the human 5‐HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti‐emetics in the 5‐HT3 receptor.  相似文献   
118.
Seth D  Rudolph J 《Biochemistry》2006,45(28):8476-8487
MAP kinase phosphatase 3 (MKP3) is a protein tyrosine phosphatase (PTP) for which in vivo evidence suggests that regulation can occur by oxidation and/or reduction of the active site cysteine. Using kinetics and mass spectrometry, we have probed the biochemical details of oxidation of the active site cysteine in MKP3, with particular focus on the mechanism of protection from irreversible inactivation to the sulfinic or sulfonic acid species. Like other PTPs, MKP3 was found to be rapidly and reversibly inactivated by mild treatment with hydrogen peroxide. We demonstrate that unlike the case for some PTPs, the sulfenic acid of the active site cysteine in MKP3 is not stabilized in the active site but instead is rapidly trapped in a re-reducible form. Unlike the case for other PTPs, the sulfenic acid in MKP3 does not form a sulfenyl-amide species with its neighboring residue or a disulfide with a single proximate cysteine. Instead, multiple cysteines distributed in both the N-terminal substrate-binding domain (Cys147 in particular) and the C-terminal catalytic domain (Cys218) are capable of rapidly and efficiently trapping the sulfenic acid as a disulfide. Our results extend the diversity of mechanisms utilized by PTPs to prevent irreversible oxidation of their active sites and expand the role of the N-terminal substrate recognition domain in MKP3 to include redox regulation.  相似文献   
119.
Opiates have been reported to induce T cell loss. We evaluated the role of vitamin D receptor (VDR) and the activation of the renin-angiotensin system (RAS) in morphine-induced T cell loss. Morphine-treated human T cells displayed downregulation of VDR and the activation of the RAS. On the other hand, a VDR agonist (EB1089) enhanced T cell VDR expression both under basal and morphine-stimulated states. Since T cells with silenced VDR displayed the activation of the RAS, whereas activation of the VDR was associated with downregulation of the RAS, it appears that morphine-induced T cell RAS activation was dependent on the VDR status. Morphine enhanced reactive oxygen species (ROS) generation in a dose-dependent manner. Naltrexone (an opiate receptor antagonist) inhibited morphine-induced ROS generation and thus, suggested the role of opiate receptors in T cell ROS generation. The activation of VDR as well as blockade of ANG II (by losartan, an AT(1) receptor blocker) also inhibited morphine-induced T cell ROS generation. Morphine not only induced double-strand breaks (DSBs) in T cells but also attenuated DNA repair response, whereas activation of VDR not only inhibited morphine-induced DSBs but also enhanced DNA repair. Morphine promoted T cell apoptosis; however, this effect of morphine was inhibited by blockade of opiate receptors, activation of the VDR, and blockade of the RAS. These findings indicate that morphine-induced T cell apoptosis is mediated through ROS generation in response to morphine-induced downregulation of VDR and associated activation of the RAS.  相似文献   
120.
Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl2 (pH 7.4) and Na2HPO4 solutions for different time intervals. These chitosan hydrogel–HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel–HAp composite membranes can be useful for tissue-engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号