首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3145篇
  免费   165篇
  国内免费   4篇
  3314篇
  2023年   27篇
  2022年   58篇
  2021年   113篇
  2020年   66篇
  2019年   69篇
  2018年   91篇
  2017年   86篇
  2016年   105篇
  2015年   162篇
  2014年   147篇
  2013年   247篇
  2012年   253篇
  2011年   244篇
  2010年   159篇
  2009年   125篇
  2008年   158篇
  2007年   154篇
  2006年   139篇
  2005年   117篇
  2004年   86篇
  2003年   80篇
  2002年   78篇
  2001年   38篇
  2000年   28篇
  1999年   30篇
  1998年   16篇
  1997年   18篇
  1995年   15篇
  1992年   14篇
  1991年   18篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   21篇
  1983年   16篇
  1982年   19篇
  1981年   12篇
  1979年   15篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   12篇
  1972年   14篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有3314条查询结果,搜索用时 15 毫秒
111.
112.
A wheat basic protein (WBP) was purified to homogeneity from wheat germ by a protocol involving extraction, centrifugation, batchwise elution from carboxymethylcellulose (CM-52), acidification with trifluoroacetic acid, neutralization and HPLC on a SP5PW cation exchange column. WBP is a 10 kDa protein and is phosphorylated on serine residues by wheat germ Ca(2+)-dependent protein kinase (CDPK). [32P]phosphoWBP exactly comigrates with WBP on SDS-PAGE. WBP does not inhibit either wheat germ CDPK or calmodulin-dependent myosin light chain kinase. Apart from histone H1, WBP is the best endogenous substrate yet found for wheat embryo CDPK. A 12 kDa pine basic protein (PBP) was purified to homogeneity from seeds of stone pine (Pinus pinea L.) by a simple procedure involving batchwise elution from carboxymethylcellulose and cation exchange HPLC. PBP is also a good substrate for CDPK and is phosphorylated on Ser residues. N-terminal sequencing of WBP and PBP revealed that these proteins are homologous to a family of small basic plant proteins having a phospholipid transfer function.  相似文献   
113.
A fundamental difference between normal cells and tumor cells is the proliferative activity of the nucleus and nucleolus, which increases progressively from normal to oral dysplastic mucosa to oral squamous cell carcinoma (OSCC). This activity is evaluated routinely using hematoxylin and eosin (H & E) staining, but in some cases, inter-observer variability occurs among pathologists. We evaluated cellular proliferation by staining sections with the methyl green-pyronin Y procedure and the Feulgen reaction. We also compared the efficacy of methyl green-pyronin Y and Feulgen staining for studying nuclear and nucleolar features in oral dysplastic mucosa and in different grades of OSCC. Sections cut from formalin fixed, paraffin embedded blocks of five normal mucosa, 15 dysplastic mucosa, 10 well-differentiated OSCC, 10 moderately differentiated OSCC and five poorly differentiated OSCC cases were stained with Hematoxylin and Eosin, methyl green-pyronin Y and the Feulgen reaction. The mean diameters of the nuclei and number of nucleoli showed significant differences. A progressive increase in diameter of the nucleus and number of nucleoli was observed from normal mucosa through poorly differentiated OSCC. We observed that methyl green-pyronin Y stain is more useful than Feulgen and hematoxylin and eosin for simultaneous quantitative assessment of both RNA and DNA. The simplicity of this technique makes it a valuable tool even for daily routine examination.  相似文献   
114.
115.
Khantwal CM  Swaan PW 《Biochemistry》2008,47(12):3606-3614
We report the involvement of transmembrane domain 4 (TM4) of hASBT in forming the putative translocation pathway, using cysteine-scanning mutagenesis in conjunction with solvent-accessibility studies using the membrane-impermeant, sulfhydryl-specific methanethiosulfonate reagents. We individually mutated each of the 21 amino acids in TM4 to cysteine on a fully functional, MTS-resistant C270A-hASBT template. The single-cysteine mutants were expressed in COS-1 cells, and their cell surface expression levels, transport activities [uptake of the prototypical hASBT substrate taurocholic acid (TCA)], and sensitivities to MTS exposure were determined. Only P161 lacked cell-surface expression. Overall, cysteine replacement was tolerated at charged and polar residues, except for mutants I160C, Y162C, I165C, and G179C (相似文献   
116.
Francisella tularensis is the causative agent of a fatal human disease, tularemia. F. tularensis was used in bioweapon programs in the past and is now classified as a category A select agent owing to its possible use in bioterror attacks. Despite over a century since its discovery, an effective vaccine is yet to be developed. In this study four transposon insertion mutants of F. tularensis live vaccine strain (LVS) in Na/H antiporter (FTL_0304), aromatic amino acid transporter (FTL_0291), outer membrane protein A (OmpA)-like family protein (FTL_0325) and a conserved hypothetical membrane protein gene (FTL_0057) were evaluated for their attenuation and protective efficacy against F. tularensis SchuS4 strain. All four mutants were 100–1000 fold attenuated for virulence in mice than parental F. tularensis. Except for the FTL_0304, single intranasal immunization with the other three mutants provided 100% protection in BALB/c mice against intranasal challenge with virulent F. tularensis SchuS4. Differences in the protective ability of the FTL_0325 and FTL_0304 mutant which failed to provide protection against SchuS4 were investigated further. The results indicated that an early pro-inflammatory response and persistence in host tissues established a protective immunity against F. tularensis SchuS4 in the FTL_0325 immunized mice. No differences were observed in the levels of serum IgG antibodies amongst the two vaccinated groups. Recall response studies demonstrated that splenocytes from the FTL_0325 mutant immunized mice induced significantly higher levels of IFN-γ and IL-17 cytokines than the FTL_0304 immunized counterparts indicating development of an effective memory response. Collectively, this study demonstrates that persistence of the vaccine strain together with its ability to induce an early pro-inflammatory innate immune response and strong memory responses can discriminate between successful and failed vaccinations against tularemia. This study describes a live attenuated vaccine which may prove to be an ideal vaccine candidate for prevention of respiratory tularemia.  相似文献   
117.
118.
Glioblastoma, the most common and aggressive primary brain tumors, carry a bleak prognosis and often recur even after standard treatment modalities. Emerging evidence suggests that deregulation of the Wnt/β-catenin/Tcf signaling pathway contributes to glioblastoma progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit tumor cell proliferation by suppressing Wnt/β-catenin/Tcf signaling in various human malignancies. In this study, we sought to inhibit Wnt/β-catenin/Tcf signaling in glioblastoma cells by the NSAIDs diclofenac and celecoxib. Both diclofenac and celecoxib significantly reduced the proliferation, colony formation and migration of human glioblastoma cells. Diclofenac and celecoxib downregulated β-catenin/Tcf reporter activity. Western and qRT-PCR analysis showed that diclofenac and celecoxib reduced the expression of β-catenin target genes Axin2, cyclin D1 and c-Myc. In addition, the cytoplasmic accumulation and nuclear translocation of β-catenin was significantly reduced following diclofenac and celecoxib treatment. Furthermore, diclofenac and celecoxib significantly increased phosphorylation of β-catenin and reduced the phosphorylation of GSK3β. These results clearly indicated that diclofenac and celecoxib are potential therapeutic agents against glioblastoma cells that act by suppressing the activation of Wnt/β-catenin/Tcf signaling.  相似文献   
119.
Abstract

Transesterification of sucrose with fatty acids catalyzed by subtilisin Carlsberg occurs with regioselectivity that is different from that in lipases. Thermomyces lanuginosus lipase (TlL) and Candida antarctica lipase B (CALB) catalyze synthesis at positions 6 and 6′, with differing abilities, while subtilisin catalysis leads to the l′-acylated sucrose. The catalytic machinery in lipases is approximately mirrored in subtilisins but different pocket morphologies including size, shape, and rearrangement of the catalytic elements underlies the differing regioselectivities. The thermodynamic consequences of these differences on the above reactions have been explored systematically using computational methods, determining the free energies of interaction of the putative transition-state adducts. Analysis of the conformers with the lowest transition state energies (protein-ligand interactions and vibrational entropy contributions) indicates that enthalpic factors control specificities in lipases while entropic factors are more important in subtilisin.  相似文献   
120.
In this study, the in vitro potential of 42 Trichoderma spp. were evaluated against four isolates of soil borne phytopathogenic fungi viz., Rhizoctonia solani, Macrophomina sp., Sclerotium rolfsii and Pythium aphanidermatum in dual culture techniques and through production of volatile and non-volatile inhibitors. In vitro screening results showed that the proportion of isolates with antagonistic activities was highest for the S. rolfsii followed by R. solani, Macrophomina sp. and P. aphanidermatum, respectively. The isolates TNT1, TNP2 and TWP1 showed consistent results in volatile and non-volatile activity in vitro against any of the two pathogens tested. Based on genomic finger prints, potential isolates showed no particular correlation between the origin of the isolates and the Random Amplified Polymorphic DNA (RAPD) groups could not be established. However, the polymorphism shown by the isolates did not correlate to their level of antagonism. Whereas, in physiology studies using BIOLOG (microbial identification system), three groups were formed, one group consists with 14 different Trichoderma species and two groups with two isolates each comprised of only T. koningii and T. viride.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号