首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   22篇
  171篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1961年   1篇
  1926年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
41.
Triton WR-1339, administered parenterally, has long been known to be a potent hyperlipemic agent. In vitro lipid biosynthesis is stimulated in liver and brain preparations from animals injected with Triton. Only in a perfused isolated liver system has an in vitro effect of Triton on lipid synthesis been demonstrated. In the present study, lipid biosynthesis has been shown to increase in bone, a third organ system, under the influence of in vitro Triton WR-133. This stimulation affects most major lipid classes. Triton similarly stimulates lipid synthesis in tissue cultures of bone cells. This is the first report of an effect of Triton on lipid synthesis (1) in bone and (2) in any tissue culture system.  相似文献   
42.
43.
The skeletal muscle Ca(2+)-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H(2)O(2) treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [(3)H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).  相似文献   
44.
Bi-directional calcium (Ca2+) signaling between mitochondria and intracellular stores (endoplasmic/sarcoplasmic reticulum) underlies important cellular functions, including oxidative ATP production. In striated muscle, this coupling is achieved by mitochondria being located adjacent to Ca2+ stores (sarcoplasmic reticulum [SR]) and in proximity of release sites (Ca2+ release units [CRUs]). However, limited information is available with regard to the mechanisms of mitochondrial-SR coupling. Using electron microscopy and electron tomography, we identified small bridges, or tethers, that link the outer mitochondrial membrane to the intracellular Ca2+ stores of muscle. This association is sufficiently strong that treatment with hypotonic solution results in stretching of the SR membrane in correspondence of tethers. We also show that the association of mitochondria to the SR is 1) developmentally regulated, 2) involves a progressive shift from a longitudinal clustering at birth to a specific CRU-coupled transversal orientation in adult, and 3) results in a change in the mitochondrial polarization state, as shown by confocal imaging after JC1 staining. Our results suggest that tethers 1) establish and maintain SR–mitochondrial association during postnatal maturation and in adult muscle and 2) likely provide a structural framework for bi-directional signaling between the two organelles in striated muscle.  相似文献   
45.
A novel series of benzoazepin-2-ones were designed and synthesized targeting the PIF pocket of AGC protein kinases, among which a series of thioether-linked benzoazepin-2-ones were discovered to bind to the PIF pocket of 3-phosphoinositide-dependent kinase-1 (PDK1), and to displace the PIF peptide with an EC50 values in the lower micromolar range. The structure–activity relationships (SARs) of the linker region, tail region, and distal region were explored to further optimize these novel binders which target the PIF pocket of PDK1. When tested in an in vitro PDK1 enzymatic assay using a peptide substrate, the benzodiazepin-2-ones increased the activity of the enzyme in a concentration-dependent fashion, indicating these compounds act as PDK1 allosteric activators. These new compounds may be further developed as therapeutic agents for the treatment of diseases where the PDK1-mediated AGC protein kinases are dysregulated.  相似文献   
46.
Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15-16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at -140 mV; -39.0 +/- 4.5 and -42.3 +/- 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V(1/2) was -61.0 +/- 1.7 and -64.5 +/- 2.8 mV; k was 20.5 ± 0.8 and 22.8 +/- 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 +/- 36 to 312 +/- 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an approximately 40 and 60% reduction in membrane capacitance in FDB fibers from 15-16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90 degrees out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein-tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle.  相似文献   
47.
Nuclear export of the large ribosomal subunit requires the adapter protein Nmd3p to provide a leucine-rich nuclear export signal that is recognized by the export receptor Crm1. Nmd3p binds to the pre-60 S subunit in the nucleus. After export to the cytoplasm, the release of Nmd3p depends on the ribosomal protein Rpl10p and the GTPase Lsg1p. Here, we have carried out a mutational analysis of Nmd3 to better define the domains responsible for nucleocytoplasmic shuttling and ribosome binding. We show that mutations in two regions of Nmd3p affect 60 S binding, suggesting that its binding to the subunit is multivalent.  相似文献   
48.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   
49.
Attitudes about disclosing the identities of family members to a physician to ensure diffusion of genetic risk information within affected families were examined in a questionnaire study of Danish patients with alpha1-antitrypsin deficiency (A1AD), their relatives, and a control group of Danish citizens. The questionnaires were returned by 1,761 (82%) of 2,146 recipients; 1,609 (75%) agreed to participate and completed the questionnaire. Only 2.8% objected to disclosing the identity of children, 9.1% objected to disclosing the identity of parents, and 6.7% objected to disclosing the identity of siblings. When genetic tests are offered to a sister, 75.4% of screened individuals with severe A1AD (phenotype "piZ") and 66.8% of piZ probands thought that the physician should say who is ill. Important reasons for informing a sister at risk were, for 58%, the opportunity to prevent disease and, for 41% of piZ-probands, the opportunity to maintain openness in the family and to avoid uncertainty. Stepwise logistic regression of background variables showed that relatives were those for whom most respondents approved the disclosure of the parents' and siblings' identities to enable the physician to examine them for the presence of A1AD. Women were less prone to disclose the identity of siblings. The results indicate that the genetic counselor should inquire about relatives' identities, to ensure that they are properly informed about the known risk of severe genetic disorder, such as A1AD, for which disability can be prevented by a change of lifestyle or by careful management. Disease prevention is essential, but openness and avoidance of uncertainty in affected families are also important. Our findings imply that fully informing all relatives about the disorder and about who is actually ill should be the principal rule.  相似文献   
50.
Human central core disease (CCD) is caused by mutations/deletions in the gene that encodes the skeletal muscle ryanodine receptor (RyR1). Previous studies have shown that CCD mutations in the NH2-terminal region of RyR1 lead to the formation of leaky SR Ca2+ release channels when expressed in myotubes derived from RyR1-knockout (dyspedic) mice, whereas a COOH-terminal mutant (I4897T) results in channels that are not leaky to Ca2+ but lack depolarization-induced Ca2+ release (termed excitation-contraction [EC] uncoupling). We show here that store depletion resulting from NH2-terminal (Y523S) and COOH-terminal (Y4795C) leaky CCD mutant release channels is eliminated after incorporation of the I4897T mutation into the channel (Y523S/I4897T and Y4795C/I4897T). In spite of normal SR Ca2+ content, myotubes expressing the double mutants lacked voltage-gated Ca2+ release and thus exhibited an EC uncoupling phenotype similar to that of I4897T-expressing myotubes. We also show that dyspedic myotubes expressing each of seven recently identified CCD mutations located in exon 102 of the RyR1 gene (G4890R, R4892W, I4897T, G4898E, G4898R, A4905V, R4913G) behave as EC-uncoupled release channels. Interestingly, voltage-gated Ca2+ release was nearly abolished (reduced approximately 90%) while caffeine-induced Ca2+ release was only marginally reduced in R4892W-expressing myotubes, indicating that this mutation preferentially disrupts voltage-sensor activation of release. These data demonstrate that CCD mutations in exon 102 disrupt release channel permeation to Ca2+ during EC coupling and that this region represents a primary molecular locus for EC uncoupling in CCD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号