首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   22篇
  171篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1961年   1篇
  1926年   1篇
排序方式: 共有171条查询结果,搜索用时 0 毫秒
31.

Background

Two randomised, double-blind, placebo-controlled trials have investigated the efficacy of IV alpha-1 antitrypsin (AAT) augmentation therapy on emphysema progression using CT densitometry.

Methods

Data from these similar trials, a 2-center Danish-Dutch study (n = 54) and the 3-center EXAcerbations and CT scan as Lung Endpoints (EXACTLE) study (n = 65), were pooled to increase the statistical power. The change in 15th percentile of lung density (PD15) measured by CT scan was obtained from both trials. All subjects had 1 CT scan at baseline and at least 1 CT scan after treatment. Densitometric data from 119 patients (AAT [Alfalastin® or Prolastin®], n = 60; placebo, n = 59) were analysed by a statistical/endpoint analysis method. To adjust for lung volume, volume correction was made by including the change in log-transformed total lung volume as a covariate in the statistical model.

Results

Mean follow-up was approximately 2.5 years. The mean change in lung density from baseline to last CT scan was -4.082 g/L for AAT and -6.379 g/L for placebo with a treatment difference of 2.297 (95% CI, 0.669 to 3.926; p = 0.006). The corresponding annual declines were -1.73 and -2.74 g/L/yr, respectively.

Conclusions

The overall results of the combined analysis of 2 separate trials of comparable design, and the only 2 controlled clinical trials completed to date, has confirmed that IV AAT augmentation therapy significantly reduces the decline in lung density and may therefore reduce the future risk of mortality in patients with AAT deficiency-related emphysema.

Trial registration

The EXACTLE study was registered in ClinicalTrials.gov as ''Antitrypsin (AAT) to Treat Emphysema in AAT-Deficient Patients''; ClinicalTrials.gov Identifier: NCT00263887.  相似文献   
32.
33.
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.  相似文献   
34.
Heart mitochondria utilize multiple Ca(2+) transport mechanisms. Among them, the mitochondrial ryanodine receptor provides a fast Ca(2+) uptake pathway across the inner membrane to control "excitation and metabolism coupling." In the present study, we identified a novel ryanodine-sensitive channel in the native inner membrane of heart mitochondria and characterized its pharmacological and biophysical properties by directly patch clamping mitoplasts. Four distinct channel conductances of ~100, ~225, ~700, and ~1,000 picosiemens (pS) in symmetrical 150 mm CsCl were observed. The 225 pS cation-selective channel exhibited multiple subconductance states and was blocked by high concentrations of ryanodine and ruthenium red, known inhibitors of ryanodine receptors. Ryanodine exhibited a concentration-dependent modulation of this channel, with low concentrations stabilizing a subconductance state and high concentrations abolishing activity. The 100, 700, and 1,000 pS conductances exhibited different channel characteristics and were not inhibited by ryanodine. Taken together, these findings identified a novel 225 pS channel as the native mitochondrial ryanodine receptor channel activity in heart mitoplasts with biophysical and pharmacological properties that distinguish it from previously identified mitochondrial ion channels.  相似文献   
35.
Understanding species differences in the placental transfer of monoclonal antibodies is important to inform species selection for nonclinical safety assessment, interpret embryo‐fetal changes observed in these studies, and extrapolate their human relevance. Data presented here for a fully human immunoglobulin G2 monoclonal antibody (IgG2X) revealed that, during organogenesis, in both the cynomolgus monkey (gestation day 35 [gd35]) and the rat (gd10) the extent of IgG2X placental transfer (approximately 0.5% maternal plasma concentration, MPC) was similar to the limited published human data for endogenous IgG. At this early gestational stage, IgG2X placental transfer was approximately 6‐fold higher in the rabbit (gd10). By the end of organogenesis, rat embryonic plasma concentrations (gd16) exceeded those in the cynomolgus monkey (gd50) by approximately 3‐fold. These data suggest that relative to the cynomolgus monkey, the rabbit (and to a lesser extent the rat) may overestimate potential harmful effects to the human embryo during this critical period of development. Beyond organogenesis, fetal IgG2X plasma concentrations increased approximately 10‐fold early in the second trimester (gd50–70) in the cynomolgus monkey and remained relatively unchanged thereafter (at approximately 5% MPC). Late gestational assessment was precluded in rabbits due to immunogenicity, but in rats, fetal IgG2X plasma concentrations increased more than 6‐fold from gd16 to gd21 (reaching approximately 15% MPC). In rats, maternal exposure consistent with that achieved by ICH S6(R1) high‐dose selection criteria resulted in embryonic plasma concentrations, reaching pharmacologically relevant levels during organogenesis. Furthermore, dose proportional exposure in both mothers and embryos indicated that this was unlikely to occur at the lower therapeutic dose levels used in humans  相似文献   
36.
The replication terminator protein (RTP) is a dimeric molecule that binds specific sequences within the replication terminus of the Bacillus subtilis chromosome and prevents the passage of replication forks. The gene for RTP has been expressed in Escherichia coli, and the protein has been purified in amounts sufficient for structural studies by nuclear magnetic resonance (NMR) and x-ray crystallography. One-dimensional NMR experiments show that the protein has a well-folded compact tertiary structure, as well as a high alpha-helical content. Circular dichroism (CD) studies confirm this finding and show that approximately 32% of the protein is alpha-helical. The terminator protein has been crystallized as monoclinic plates that diffract to better than 2.5 A and are suitable for high resolution structural analysis. Precession photographs show the space group to be C2 with unit cell dimensions a = 77 A, b = 53 A, c = 70 A, and beta = 90 degrees, and two molecules occupy the asymmetric unit. With a view to producing crystals of an RTP.DNA complex, gel-shift assays were performed to establish the shortest sequence of DNA that is required for tight binding to RTP. These clearly show that two turns of DNA are required, centered on an 8-base pair consensus sequence, to elicit relatively stable binding.  相似文献   
37.
Strong depolarization and dihydropyridine agonists potentiate inward currents through native L-type Ca2+ channels, but the effect on outward currents is less clear due to the small size of these currents. Here, we examined potentiation of wild-type alpha1C and two constructs bearing mutations in conserved glutamates in the pore regions of repeats II and IV (E2A/E4A-alpha1C) or repeat III (E3K-alpha1C). With 10 mM Ca2+ in the bath and 110 mM Cs+ in the pipette, these mutated channels, expressed in dysgenic myotubes, produced both inward and outward currents of substantial amplitude. For both the wild-type and mutated channels, we observed strong inward rectification of potentiation: strong depolarization had little effect on outward tail currents but caused the inward tail currents to be larger and to decay more slowly. Similarly, exposure to DHP agonist increased the amplitude of inward currents and decreased the amplitude of outward currents through both E2A/E4A-alpha1C and E3K-alpha1C. As in the absence of drug, strong depolarization in the presence of dihydropyridine agonist had little effect on outward tail currents but increased the amplitude and slowed the decay of inward tail currents. We tested whether cytoplasmic Mg2+ functions as the blocking particle responsible for the rectification of potentiated L-type Ca2+ channels. However, even after complete removal of cytoplasmic Mg2+, (-)BayK 8644 still potentiated inward current and partially blocked outward current via E2A/E4A-alpha1C. Although zero Mg2+ did not reveal potentiation of outward current by DHP agonist, it did have two striking effects, (a) a strong suppression of decay of both inward and outward currents via E2A/E4A-alpha1C and (b) a nearly complete elimination of depolarization-induced potentiation of inward tail currents. These results can be explained by postulating that potentiation exposes a binding site in the pore to which an intracellular blocking particle can bind and produce inward rectification of the potentiated channels.  相似文献   
38.
Intercellular communication of epithelial cells was examined by measuring changes in intracellular calcium concentration ([Ca2+]i). Mechanical stimulation of respiratory tract ciliated cells in culture induced a wave of increasing Ca2+ that spread, cell by cell, from the stimulated cell to neighboring cells. The communication of these Ca2+ waves between cells was restricted or blocked by halothane, an anesthetic known to uncouple cells. In the absence of extracellular Ca2+, the mechanically stimulated cell showed no change or a decrease in [Ca2+]i, whereas [Ca2+]i increased in neighboring cells. Iontophoretic injection of inositol 1,4,5-trisphosphate (IP3) evoked a communicated Ca2+ response that was similar to that produced by mechanical stimulation. These results support the hypothesis that IP3 acts as a cellular messenger that mediates communication through gap junctions between ciliated epithelial cells.  相似文献   
39.
A cell-free system was used to characterize the phosphorylation of Mycoplasma pneumoniae proteins HMW1 and HMW2, which are involved in the adherence of this organism to human tracheal epithelium during infection. The pH and cation requirements for phosphorylation of HMW1 and HMW2 were determined, and the effects of glycolytic intermediates, cyclic AMP, and eukaryotic kinase-phosphatase inhibitors and stimulators on this process were examined. Phosphoamino acid analysis identified serine as the major phosphate acceptor for both HMW1 and HMW2 in this system.  相似文献   
40.
Triton WR-1339, administered parenterally, has long been known to be a potent hyperlipemic agent. In vitro lipid biosynthesis is stimulated in liver and brain preparations from animals injected with Triton. Only in a perfused isolated liver system has an in vitro effect of Triton on lipid synthesis been demonstrated. In the present study, lipid biosynthesis has been shown to increase in bone, a third organ system, under the influence of in vitro Triton WR-133. This stimulation affects most major lipid classes. Triton similarly stimulates lipid synthesis in tissue cultures of bone cells. This is the first report of an effect of Triton on lipid synthesis (1) in bone and (2) in any tissue culture system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号