首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5127篇
  免费   484篇
  5611篇
  2023年   22篇
  2022年   52篇
  2021年   87篇
  2020年   61篇
  2019年   63篇
  2018年   83篇
  2017年   85篇
  2016年   124篇
  2015年   225篇
  2014年   275篇
  2013年   340篇
  2012年   427篇
  2011年   428篇
  2010年   302篇
  2009年   265篇
  2008年   358篇
  2007年   364篇
  2006年   336篇
  2005年   309篇
  2004年   291篇
  2003年   272篇
  2002年   244篇
  2001年   38篇
  2000年   38篇
  1999年   51篇
  1998年   83篇
  1997年   33篇
  1996年   50篇
  1995年   45篇
  1994年   50篇
  1993年   34篇
  1992年   22篇
  1991年   13篇
  1990年   15篇
  1989年   18篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   13篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
排序方式: 共有5611条查询结果,搜索用时 15 毫秒
91.
GTP cyclohydrolase I (GCYH-I) is an essential Zn2+-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in ∼25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn2+-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn2+ starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn2+-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.The Zn2+-dependent enzyme GTP cyclohydrolase I (GCYH-I; EC 3.5.4.16) is the first enzyme of the de novo tetrahydrofolate (THF) biosynthesis pathway (Fig. (Fig.1)1) (38). THF is an essential cofactor in one-carbon transfer reactions in the synthesis of purines, thymidylate, pantothenate, glycine, serine, and methionine in all kingdoms of life (38), and formylmethionyl-tRNA in bacteria (7). Recently, it has also been shown that GCYH-I is required for the biosynthesis of the 7-deazaguanosine-modified tRNA nucleosides queuosine and archaeosine produced in Bacteria and Archaea (44), respectively, as well as the 7-deazaadenosine metabolites produced in some Streptomyces species (33). GCYH-I is encoded in Escherichia coli by the folE gene (28) and catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (55), a complex reaction that begins with hydrolytic opening of the purine ring at C-8 of GTP to generate an N-formyl intermediate, followed by deformylation and subsequent rearrangement and cyclization of the ribosyl moiety to generate the pterin ring in THF (Fig. (Fig.1).1). Notably, the enzyme is dependent on an essential active-site Zn2+ that serves to activate a water molecule for nucleophilic attack at C-8 in the first step of the reaction (2).Open in a separate windowFIG. 1.Reaction catalyzed by GCYH-I, and metabolic fate of 7,8-dihydroneopterin triphosphate.A homologous GCYH-I is found in mammals and other higher eukaryotes, where it catalyzes the first step of the biopterin (BH4) pathway (Fig. (Fig.1),1), an essential cofactor in the biosynthesis of tyrosine and neurotransmitters, such as serotonin and l-3,4-dihydroxyphenylalanine (3, 52). Recently, a distinct class of GCYH-I enzymes, GCYH-IB (encoded by the folE2 gene), was discovered in microbes (26% of sequenced Bacteria and most Archaea) (12), including several clinically important human pathogens, e.g., Neisseria and Staphylococcus species. Notably, GCYH-IB is absent in eukaryotes.The distribution of folE (gene product renamed GCYH-IA) and folE2 (GCYH-IB) in bacteria is diverse (12). The majority of organisms possess either a folE (65%; e.g., Escherichia coli) or a folE2 (14%; e.g., Neisseria gonorrhoeae) gene. A significant number (12%; e.g., B. subtilis) possess both genes (a subset of 50 bacterial species is shown in Table Table1),1), and 9% lack both genes, although members of the latter group are mainly intracellular or symbiotic bacteria that rely on external sources of folate. The majority of Archaea possess only a folE2 gene, and the encoded GCYH-IB appears to be necessary only for the biosynthesis of the modified tRNA nucleoside archaeosine (44) except in the few halophilic Archaea that are known to synthesize folates, such as Haloferax volcanii, where GCYH-IB is involved in both archaeosine and folate formation (13, 44).

TABLE 1.

Distribution and candidate Zur-dependent regulation of alternative GCYH-I genes in bacteriaa
OrganismcPresence of:
folEfolE2
Enterobacteria
    Escherichia coli+
    Salmonella typhimurium+
    Yersinia pestis+
    Klebsiella pneumoniaeb++a
    Serratia marcescens++a
    Erwinia carotovora+
    Photorhabdus luminescens+
    Proteus mirabilis+
Gammaproteobacteria
    Vibrio cholerae+
    Acinetobacter sp. strain ADP1++a
    Pseudomonas aeruginosa++a
    Pseudomonas entomophila L48++a
    Pseudomonas fluorescens Pf-5++a
    Pseudomonas syringae++a
    Pseudomonas putida++a
    Hahella chejuensis KCTC 2396++a
    Chromohalobacter salexigens DSM 3043++a
    Methylococcus capsulatus++a
    Xanthomonas axonopodis++a
    Xanthomonas campestris++a
    Xylella fastidiosa++a
    Idiomarina loihiensis+
    Colwellia psychrerythraea++
    Pseudoalteromonas atlantica T6c++a
    Pseudoalteromonas haloplanktis TAC125++
    Alteromonas macleodi+
    Nitrosococcus oceani++
    Legionella pneumophila+
    Francisella tularensis+
Betaproteobacteria
    Chromobacterium violaceum+
    Neisseria gonorrhoeae+
    Burkholderia cepacia R18194++
    Burkholderia cenocepacia AU 1054++
    Burkholderia xenovorans+
    Burkholderia mallei+
    Bordetella pertussis+
    Ralstonia eutropha JMP134+
    Ralstonia metallidurans++
    Ralstonia solanacearum+
    Methylobacillus flagellatus+
    Nitrosomonas europaea+
    Azoarcus sp.++
Bacilli/Clostridia
    Bacillus subtilisd++
    Bacillus licheniformis++
    Bacillus cereus+
    Bacillus halodurans++
    Bacillus clausii+
    Geobacillus kaustophilus+
    Oceanobacillus iheyensis+
    Staphylococcus aureus+
Open in a separate windowaGenes that are preceded by candidate Zur binding sites.bZur-regulated cluster is on the virulence plasmid pLVPK.cExamples of organisms with no folE genes are in boldface type.dZn-dependent regulation of B. subtilis folE2 by Zur was experimentally verified (17).Expression of the Bacillus subtilis folE2 gene, yciA, is controlled by the Zn2+-dependent Zur repressor and is upregulated under Zn2+-limiting conditions (17). This led us to propose that the GCYH-IB family utilizes a metal other than Zn2+ to allow growth in Zn2+-limiting environments, a hypothesis strengthened by the observation that an archaeal ortholog from Methanocaldococcus jannaschii has recently been shown to be Fe2+ dependent (22). To test this hypothesis, we investigated the physiological role of GCYH-IB in B. subtilis, an organism that contains both isozymes, as well as the metal dependence of B. subtilis GCYH-IB in vitro. To gain a structural understanding of the metal dependence of GCYH-IB, we determined high-resolution crystal structures of Zn2+- and Mn2+-bound forms of the N. gonorrhoeae ortholog. Notably, although the GCYH-IA and -IB enzymes belong to the tunneling-fold (T-fold) superfamily, there are significant differences in their global and active-site architecture. These studies shed light on the physiological significance of the alternative folate biosynthesis isozymes in bacteria exposed to various metal environments, and offer a structural understanding of the differential metal dependence of GCYH-IA and -IB.  相似文献   
92.
The present study reports aspects of GI tract physiology in the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate, Raja eglanteria. Plasma and stomach fluid osmolality and solute values were comparable between species, and stomach pH was low in all species (2.2 to 3.4) suggesting these elasmobranchs may maintain a consistently low stomach pH. Intestinal osmolality, pH and ion values were comparable between species, however, some differences in ion values were observed. In particular Ca2+ (19.67 ± 3.65 mM) and Mg2+ (43.99 ± 5.11 mM) were high in L. erinacea and Mg2+ was high (130.0 ± 39.8 mM) in C. palgiosum which may be an indication of drinking. Furthermore, intestinal fluid HCO3? values were low (8.19 ± 2.42 and 8.63 ± 1.48 mM) in both skates but very high in C. plagiosum (73.3 ± 16.3 mM) suggesting ingested seawater may be processed by species-specific mechanisms. Urea values from the intestine to the colon dropped precipitously in all species, with the greatest decrease seen in C. plagiosum (426.0 ± 8.1 to 0 mM). This led to the examination of the molecular expression of both a urea transporter and a Rhesus like ammonia transporter in the intestine, rectal gland and kidney in L. erinacea. Both these transporters were expressed in all tissues; however, expression levels of the Rhesus like ammonia transporter were orders of magnitude higher than the urea transporter in the same tissue. Intestinal flux rates of solutes in L. erinacea were, for the most part, in an inward direction with the notable exception of urea. Colon flux rates of solutes in L. erinacea were all in an outward direction, although absolute rates were considerably lower than the intestine, suggestive of a much tighter epithelia. Results are discussed in the context of the potential role of the GI tract in salt and water, and nitrogen, homeostasis in elasmobranchs.  相似文献   
93.
94.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   
95.
Tissue injury is associated with decreased cellular immunity and enhanced metabolism. Immunodepression is thought to be counteracted by interferon (IFN)-gamma, which increases human leukocyte antigen (HLA)-DR expression. Hypermetabolism could be enhanced by IFN-gamma because cytokines induce a hypermetabolic response to stress. In healthy humans, IFN-gamma enhanced HLA-DR expression without effects on glucose and fat metabolism. In the present study, we evaluated whether IFN-gamma lacks potential harmful side effects on metabolic and endocrine pathways while maintaining its beneficial effects on the immune system under conditions in which the inflammatory response system is activated. In 13 patients scheduled for major surgery, we studied HLA-DR expression on peripheral blood monocytes before surgery and postoperatively randomized the patients into an intervention and a placebo group. Subsequently, we evaluated the effects of a single dose of IFN-gamma vs. saline on short-term monocyte activation, glucose and lipid metabolism, and glucose and lipid regulatory hormones. HLA-DR expression on monocytes was restored from postoperative levels of 54% (42-60%; median and interquartiles) to 92% (91-96%) 24 h after IFN-gamma administration but stayed low in the placebo-treated patients. IFN-gamma did not affect glucose metabolism (plasma glucose, rate of appearance and disappearance of glucose) and lipid metabolism (plasma glycerol, plasma free fatty acids, and rates of appearance and disappearance of glycerol). IFN-gamma had no effect on plasma cortisol, adrenocorticotropic hormone, growth hormone, insulin, C-peptide, glucagon, epinephrine, and norepinephrine concentrations. We conclude that IFN-gamma exerts a favorable effect on cell-mediated immunity in patients after major surgery without effects on glucose and lipid metabolism.  相似文献   
96.
97.
The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and β-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP–EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC–Mag-EGFP) and 200 and 520 (for MamC–Mag-EGFP–EGFP) GFP copies were estimated to be expressed per individual magnetosome particle.  相似文献   
98.
The nidogen-laminin interaction is proposed to play a key role in basement membrane (BM) assembly. However, though there are similarities, the phenotypes in mice lacking nidogen 1 and 2 (nidogen double null) differ to those of mice lacking the nidogen binding module (γ1III4) of the laminin γ1 chain. This indicates different cell- and tissue-specific functions for nidogens and their interaction with laminin and poses the question of whether the phenotypes in nidogen double null mice are caused by the loss of the laminin-nidogen interaction or rather by other unknown nidogen functions. To investigate this, we analyzed BMs, in particular those in the skin of mice lacking the nidogen binding module. In contrast to nidogen double null mice, all skin BMs in γ1III4-deficient mice appeared normal. Furthermore, although nidogen 1 deposition was strongly reduced, nidogen 2 appeared unchanged. Mice with additional deletion of the laminin γ3 chain, which contains a γ1-like nidogen binding module, showed a further reduction of nidogen 1 in the dermoepidermal BM; however, this again did not affect nidogen 2. This demonstrates that in vivo only nidogen 1 deposition is critically dependent on the nidogen binding modules of the laminin γ1 and γ3 chains, whereas nidogen 2 is independently recruited either by binding to an alternative site on laminin or to other BM proteins.  相似文献   
99.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
100.
Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1beta, IL-6, and PGE(2) induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK cell activation, and by polarizing immunity toward a tumor-promoting type 2 phenotype. We now show that this population of immature myeloid cells induced by a given tumor share a common phenotype regardless of their in vivo location (bone marrow, spleen, blood, or tumor site), and that Gr1(high)CD11b(high)F4/80(-)CD80(+)IL4Ralpha(+/-)Arginase(+) MDSC are induced by the proinflammatory proteins S100A8/A9. S100A8/A9 proteins bind to carboxylated N-glycans expressed on the receptor for advanced glycation end-products and other cell surface glycoprotein receptors on MDSC, signal through the NF-kappaB pathway, and promote MDSC migration. MDSC also synthesize and secrete S100A8/A9 proteins that accumulate in the serum of tumor-bearing mice, and in vivo blocking of S100A8/A9 binding to MDSC using an anti-carboxylated glycan Ab reduces MDSC levels in blood and secondary lymphoid organs in mice with metastatic disease. Therefore, the S100 family of inflammatory mediators serves as an autocrine feedback loop that sustains accumulation of MDSC. Since S100A8/A9 activation of MDSC is through the NF-kappaB signaling pathway, drugs that target this pathway may reduce MDSC levels and be useful therapeutic agents in conjunction with active immunotherapy in cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号