首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5127篇
  免费   485篇
  2023年   22篇
  2022年   52篇
  2021年   87篇
  2020年   61篇
  2019年   63篇
  2018年   83篇
  2017年   85篇
  2016年   124篇
  2015年   225篇
  2014年   275篇
  2013年   340篇
  2012年   427篇
  2011年   428篇
  2010年   302篇
  2009年   265篇
  2008年   358篇
  2007年   364篇
  2006年   336篇
  2005年   309篇
  2004年   291篇
  2003年   273篇
  2002年   244篇
  2001年   38篇
  2000年   38篇
  1999年   51篇
  1998年   83篇
  1997年   33篇
  1996年   50篇
  1995年   45篇
  1994年   50篇
  1993年   34篇
  1992年   22篇
  1991年   13篇
  1990年   15篇
  1989年   18篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   13篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
排序方式: 共有5612条查询结果,搜索用时 46 毫秒
71.
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.  相似文献   
72.
Most mammalian cells contain two types of mannose 6-phosphate (Man-6-P) receptors (MPRs): the 300 kDa cation-independent (CI) MPR and 46 kDa cation-dependent (CD) MPR. The two MPRs have overlapping function in intracellular targeting of newly synthesized lysosomal proteins, but both are required for efficient targeting. Despite extensive investigation, the relative roles and specialized functions of each MPR in targeting of specific proteins remain questions of fundamental interest. One possibility is that most Man-6-P glycoproteins are transported by both MPRs, but there may be subsets that are preferentially transported by each. To investigate this, we have conducted a proteomics analysis of serum from mice lacking either MPR with the reasoning that lysosomal proteins that are selectively transported by a given MPR should be preferentially secreted into the bloodstream in its absence. We purified and identified Man-6-P glycoproteins and glycopeptides from wild-type, CDMPR-deficient, and CIMPR-deficient mouse serum and found both lysosomal proteins and proteins not currently thought to have lysosomal function. Different mass spectrometric approaches (spectral count analysis of nanospray LC-MS/MS experiments on unlabeled samples and LC-MALDI/TOF/TOF experiments on iTRAQ-labeled samples) revealed a number of proteins that appear specifically elevated in serum from each MPR-deficient mouse. Man-6-P glycoforms of cellular repressor of E1A-stimulated genes 1, tripeptidyl peptidase I, and heparanase were elevated in absence of the CDMPR and Man-6-P glycoforms of alpha-mannosidase B1, cathepsin D, and prosaposin were elevated in the absence of the CIMPR. Results were confirmed by Western blot analyses for select proteins. This study provides a comparison of different quantitative mass spectrometric approaches and provides the first report of proteins whose cellular targeting appears to be MPR-selective under physiological conditions.  相似文献   
73.
The Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) held its 6th plenary session in Medellin (Colombia) during March 2018. Several assessments were due for acceptance by the plenary. We here give news from the plenary and the platform, sketch out important key messages from the regional assessments as well as of the global thematic assessment on land degradation and restoration. We further give an outlook on the work ahead and potential for contributions from the scientific community to the important work of IPBES.  相似文献   
74.
The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e., allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo.  相似文献   
75.
The Macedonian Grayling is listed as critically endangered in the recent IUCN Red List of European butterflies because of its extreme rarity and habitat loss due to quarrying. This categorisation was, however, based on rather limited knowledge on its actual distribution, population size and habitat requirements. In 2012, we conducted field surveys to acquire more information. We found the species at six new sites extending its known range of suitable habitat to just under 10 km2. The daily population size was estimated using capture-mark-recapture method in the most densely populated part of the Pletvar pass site at more than 650 individuals. Adults proved to be extremely sedentary, not moving far even within the continuous habitat on the same slope. Oviposition was observed on dry plant material and in a rock crevice close to the potential larval host plant Festuca sp. Quarrying is confirmed to be the main threat to the habitat of the Macedonian Grayling with five out of seven populated sites containing active marble quarries. Due to the enlargement of the known area of occupancy, its threat status would now be estimated at endangered. Despite the restricted knowledge about its distribution and trends in the population size, the IUCN criteria proved to be applicable to determine the threat status of a rare and localized butterfly such as Pseudochazara cingovskii. Its original assessment of being called the most threatened butterfly in Europe resulted in immediate research project and subsequent actions that will undoubtedly help to conserve it in the future.  相似文献   
76.
Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene.  相似文献   
77.
The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi‐mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose‐dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several ‘old‐age’ phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2‐dependent upregulation of the proteasome subunits. RNAi‐mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress‐related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2‐dependent tissue‐ and age‐specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.  相似文献   
78.
Dirk Gansert  Markus Burgdorf 《Flora》2005,200(5):444-455
The effect of xylem sap flow in stems of mature Betula pendula Roth on radial CO2 efflux was studied from April to October 2001. Temperature-controlled respiration cuvettes allowed measurements of CO2 efflux without interference from temperature gradients between stem surface and sapwood. Variations of sap flow in different stem sectors, and in a given sector at different heights were analysed. Daytime reduction of CO2 efflux caused by sap flow was expressed as the difference between gross and apparent CO2 release. Gross CO2 release was calculated from Arrhenius-equations derived from night-time data records of the same day, which were free from interference by sap flow. In mid-July, daytime reductions of CO2 efflux reached 1.8–3.9 μmol CO2 m−2 g−1 xylem sap transpired. Assuming tree-specific maximum transpiration rates of 30 kg H2O d−1 this is up to 40% of gross CO2 release. In relation to photosynthetic CO2 fixation the endogenous supply of dissolved CO2 to the leaves acccounted for 0.5–3.7%. This study indicates a negative correlation between sap flow velocity and radial CO2 efflux from B. pendula stems. Periods of unbalanced CO2 partial pressures between aqueous and gaseous pathways during increase and decrease of sap flow seem to affect gaseous CO2 release through lenticels. It is concluded that CO2 efflux rates are not simply equivalent to respiration rates because of the interference of aqueous CO2 transport by xylem sap flow in the wood-body of trees.  相似文献   
79.
Margittai M  Fasshauer D  Jahn R  Langen R 《Biochemistry》2003,42(14):4009-4014
Syntaxin 1a is a member of the SNARE superfamily of small, mostly membrane-bound proteins that mediate membrane fusion in all eukaryotic cells. Upon membrane fusion, syntaxin 1 forms a stable complex with its partner SNAREs. Syntaxin contains a C-terminal transmembrane domain, an adjacent SNARE motif that interacts with its partner SNAREs, and an N-terminal Habc domain. The Habc domain reversibly folds back upon the SNARE motif, resulting in a "closed" conformation that is stabilized by binding to the protein munc18. The SNARE motif and the Habc domain are separated by a linker region of about 40 amino acids. When syntaxin is complexed with munc18, the linker is structured and consists of a mix of turns and small alpha-helices. When syntaxin is complexed with its partner SNAREs, the Habc domain is dissociated, but the structure of the linker region is not known. Here we used site-directed spin labeling and EPR spectroscopy to determine the structure of the linker region of syntaxin in the SNARE complex. We found that the entire linker region of syntaxin is unstructured except for three residues at the N-terminal and six residues at the C-terminal boundary whereas the structures of the flanking regions in the Habc domain and the SNARE motif correspond to the high-resolution structures of the isolated fragments. We conclude that the linker region exhibits a high degree of conformational flexibility.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号