首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5472篇
  免费   526篇
  国内免费   1篇
  5999篇
  2023年   23篇
  2022年   54篇
  2021年   93篇
  2020年   63篇
  2019年   65篇
  2018年   88篇
  2017年   89篇
  2016年   130篇
  2015年   238篇
  2014年   289篇
  2013年   358篇
  2012年   438篇
  2011年   448篇
  2010年   314篇
  2009年   279篇
  2008年   377篇
  2007年   384篇
  2006年   355篇
  2005年   326篇
  2004年   300篇
  2003年   292篇
  2002年   256篇
  2001年   53篇
  2000年   46篇
  1999年   59篇
  1998年   87篇
  1997年   39篇
  1996年   54篇
  1995年   48篇
  1994年   53篇
  1993年   37篇
  1992年   32篇
  1991年   18篇
  1990年   21篇
  1989年   21篇
  1988年   17篇
  1987年   18篇
  1986年   11篇
  1985年   11篇
  1984年   9篇
  1983年   15篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1978年   10篇
  1977年   15篇
  1976年   8篇
  1969年   4篇
  1965年   3篇
排序方式: 共有5999条查询结果,搜索用时 15 毫秒
11.
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.  相似文献   
12.
HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190) as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain.  相似文献   
13.
Ladybirds of the cosmopolitan tribe Chilocorini prey mainly on coccids and include several important biocontrol agents. The phylogenetic relationships of Chilocorini are poorly known. In this paper, we provide a phylogenetic reconstruction of Chilocorini containing all 27 genera based on five molecular markers and 86 adult morphological characters. Morphological character states were mapped on the combined data tree from Bayesian inference to analyse morphological traits of each genus. Sixteen morphological characters were selected to reconstruct the ancestral states using maximum parsimony and maximum likelihood methods. Divergence times were estimated based on the relaxed molecular clock approach. Our results indicate that Chilocorini, excluding Chilocorellus Miyatake, is monophyletic and closely related to Plotinini. The crown group Chilocorini was estimated to date back to the Middle Cretaceous. Anisorcus Crotch, Egius Mulsant, Phaenochilus Weise and Simmondsius Ahmad & Ghani are synonymized here with Chilocorus Leach ( syn.n. ). The genus Chilocorellus is excluded from Chilocorini. The split of current genera was estimated to have occurred during the Middle Paleogene to Late Paleogene.  相似文献   
14.
The preparation of a series of 1,3,4-thiadiazoles and 1,3,4-oxadizoles linked by a thioether to 2,6-di-t-butylphenol and the inhibition of cyclooxygenase (CO) and 5-lipoxygenase (5-LO) by these compounds is dicussed.  相似文献   
15.
Alzheimer's disease (AD) is the most common cause of dementia in elderly people, and age is the major nongenetic risk factor for sporadic AD. A hallmark of AD is the accumulation of amyloid in the brain, which is composed mainly of the amyloid beta-peptide (Aβ) in the form of oligomers and fibrils. However, how aging induces Aβ aggregation is not yet fully determined. Some residues in the Aβ sequence seem to promote Aβ-induced toxicity in association with age-dependent risk factors for AD, such as (i) increased GM1 brain membrane content, (ii) altered lipid domain in brain membrane, (iii) oxidative stress. However, the role of Aβ sequence in promoting aggregation following interaction with the plasma membrane is not yet demonstrated. As Tyr10 is implicated in the induction of oxidative stress and stabilization of Aβ aggregation, we substituted Tyr 10 with a synthetic amino acid that abolishes Aβ-induced oxidative stress and shows an accelerated interaction with GM1. This variant peptide shows impaired aggregation properties and increased affinity for GM1. It has a dominant negative effect on amyloidogenesis in vitro, in cellulo, and in isolated synaptosomes. The present study shed new light in the understanding of Aβ-membrane interactions in Aβ-induced neurotoxicity. It demonstrates the relevance of Aβ sequence in (i) Aβ-membrane interaction, underlining the role of age-dependent enhanced GM1 content in promoting Aβ aggregation, (ii) Aβ aggregation, and (iii) Aβ-induced oxidative stress. Our results open the way for the design of peptides aimed to inhibit Aβ aggregation and neurotoxicity.  相似文献   
16.
The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi‐mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose‐dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several ‘old‐age’ phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2‐dependent upregulation of the proteasome subunits. RNAi‐mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress‐related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2‐dependent tissue‐ and age‐specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.  相似文献   
17.
18.
19.
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.  相似文献   
20.
Fruit crops, including apple, orange, grape,banana, strawberry, watermelon, kiwifruit and tomato, not only provide essential nutrients for human life but also contribute to the major agricultural output and economic growth of many countries and regions in the world. Recent advancements in genome editing provides an unprecedented opportunity for the genetic improvement of these agronomically important fruit crops. Here, we summarize recent reports of applying CRISPR/Cas9 to fruit crops,including efforts to reduce disease susceptibility, change plant architecture or flower morphology, improve fruit quality traits, and increase fruit yield. We discuss challenges facing fruit crops as well as new improvements and platforms that could be used to facilitate genome editing in fruit crops, including d Cas9-base-editing to introduce desirable alleles and heat treatment to increase editing efficiency. In addition, we highlight what we see as potentially revolutionary development ranging from transgene-free genome editing to de novo domestication of wild relatives. Without doubt, we now see only the beginning of what will eventually be possible with the use of the CRISPR/Cas9 toolkit. Efforts to communicate with the public and an emphasis on the manipulation of consumerfriendly traits will be critical to facilitate public acceptance of genetically engineered fruits with this new technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号