首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6539篇
  免费   723篇
  7262篇
  2023年   26篇
  2022年   62篇
  2021年   115篇
  2020年   77篇
  2019年   74篇
  2018年   100篇
  2017年   106篇
  2016年   157篇
  2015年   266篇
  2014年   325篇
  2013年   392篇
  2012年   522篇
  2011年   502篇
  2010年   350篇
  2009年   326篇
  2008年   405篇
  2007年   414篇
  2006年   367篇
  2005年   362篇
  2004年   348篇
  2003年   314篇
  2002年   284篇
  2001年   74篇
  2000年   75篇
  1999年   85篇
  1998年   110篇
  1997年   52篇
  1996年   65篇
  1995年   64篇
  1994年   71篇
  1993年   53篇
  1992年   48篇
  1991年   48篇
  1990年   40篇
  1989年   49篇
  1988年   33篇
  1987年   41篇
  1986年   30篇
  1985年   23篇
  1984年   32篇
  1983年   30篇
  1982年   20篇
  1981年   18篇
  1979年   28篇
  1978年   22篇
  1977年   26篇
  1976年   16篇
  1974年   14篇
  1973年   16篇
  1972年   20篇
排序方式: 共有7262条查询结果,搜索用时 31 毫秒
51.
Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.  相似文献   
52.
53.
Serum proteome analysis is severely hampered by the extreme dynamic range of protein concentrations, but tools for the specific depletion of highly abundant serum proteins lack for most farm and companion animals. A well‐established alternative strategy to reduce the dynamic range of plasma protein concentrations, treatment with combinatorial peptide ligand libraries (CPLL), is generally applicable but requires large amounts of sample. Therefore, additional depletion/enrichment protocols for plasma and serum samples from animals are desirable. In this respect, we have tested a protein precipitate that formed after withdrawal of salt from human, bovine, or porcine serum at pH 4.2. The bovine sample was composed of over 300 proteins making it a potential source for biomarker discovery. Precipitation was highly reproducible and the concentrations of albumin and other highly abundant serum proteins were strongly reduced. In comparison to the CPLL treatment, precipitation did not introduce any selection bias based on hydrophathy or pI. However, the composition of both preparations was partially complementary. Salt withdrawal at pH 4.2 is suggested as additional depletion/enrichment strategy for serum samples. Also, we point out that the removal of precipitates from serum samples under the described conditions bears the risk of losing a valuable protein fraction.  相似文献   
54.
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.  相似文献   
55.
The two closely related deep-sea tubeworms Riftia pachyptila and Tevnia jerichonana both rely exclusively on a single species of sulfide-oxidizing endosymbiotic bacteria for their nutrition. They do, however, thrive in markedly different geochemical conditions. A detailed proteogenomic comparison of the endosymbionts coupled with an in situ characterization of the geochemical environment was performed to investigate their roles and expression profiles in the two respective hosts. The metagenomes indicated that the endosymbionts are genotypically highly homogeneous. Gene sequences coding for enzymes of selected key metabolic functions were found to be 99.9% identical. On the proteomic level, the symbionts showed very consistent metabolic profiles, despite distinctly different geochemical conditions at the plume level of the respective hosts. Only a few minor variations were observed in the expression of symbiont enzymes involved in sulfur metabolism, carbon fixation and in the response to oxidative stress. Although these changes correspond to the prevailing environmental situation experienced by each host, our data strongly suggest that the two tubeworm species are able to effectively attenuate differences in habitat conditions, and thus to provide their symbionts with similar micro-environments.  相似文献   
56.
SNARE proteins are essential for intracellular membrane fusion of eukaryotes. Their assembly into stable four-helix bundles bridges membranes and may provide the energy for initiating membrane fusion. In vitro, assembly of soluble SNARE fragments is accompanied by major structural rearrangements that can be described as a folding reaction. The pathways and the thermodynamics of SNARE protein interactions, however, are not known. Here we report that assembly and dissociation of two distantly related SNARE complexes exhibit a marked hysteresis. The assembled and disassembled native states are separated by a kinetic barrier and cannot equilibrate on biologically relevant timescales. We suggest that the hysteresis is a hallmark of all SNARE complexes and that complex assembly and disassembly follow different pathways that may be independently controlled.  相似文献   
57.
58.
To study the role of CD8 T cells in the control of varicella-zoster virus (VZV) reactivation, we developed multimeric major histocompatibility complexes to identify VZV-specific CD8 T cells. Potential HLA-A2 binding peptides from the putative immediate-early 62 protein (IE62) of VZV were tested for binding, and peptides with sufficient binding capacity were used to generate pentamers. Patients with VZV reactivation following stem cell transplantation were screened with these pentamers, leading to the identification of the first validated class I-restricted epitope of VZV. In 42% of HLA-A2 patients following VZV reactivation, these IE62-ALW-A2 T cells could be detected ex vivo.Varicella-zoster virus (VZV) infects about 95% of the population, persists throughout life, and may lead to herpes zoster when the virus reactivates. After T-cell-depleted allogeneic stem cell transplantation (TCD alloSCT), reactivation of the virus leads to considerable morbidity (10). Primary infection elicits both humoral and cellular responses, but cellular immunity is essential for preventing herpes zoster. The VZV genome comprises more than 70 unique open reading frames that encode proteins that are coordinately expressed during replication. The product of open reading frame 62, the immediate-early 62 (IE62) protein, is required for the initiation of VZV replication (9) and is expressed at high levels before viral replication has occurred (8). Previous research has demonstrated that IE62-specific T cells were detected after primary VZV infection and in immune subjects (2, 4). In addition, T cells recognizing various other IE proteins and glycoproteins of VZV, as demonstrated by gamma interferon (IFN-γ) production upon stimulation with peptides or lysate derived from these proteins, have been described (1, 6, 13). The VZV-specific memory T cells found in these studies were predominantly CD4 T cells, while no VZV-specific CD8 T cells were demonstrated without prior in vitro expansion, possibly due to the low frequency of VZV-specific CD8 T cells or to the low sensitivity of the screening methods used to detect CD8 T cells by IFN-γ production upon stimulation. Frey et al. described CD8 epitopes of IE62 detected following in vitro restimulation. However, the HLA restriction and specificity of these T cells were not confirmed (4). Due to the lack of validated VZV-derived immunodominant peptides for major histocompatibility complex (MHC) class I, the analysis of VZV-specific CD8 T-cell responses is hampered (14). To be able to analyze the role of CD8 T cells in VZV reactivation, we therefore set out to identify epitopes for VZV by using VZV-IE62-specific MHC class I peptide complexes.The predictive algorithms BIMAS (11) and SYFPEITHI (12) were used to select potential HLA-A2 binding peptides from the IE62 protein. Peptides with a score of ≥3 (BIMAS) or ≥20 (SYFPEITHI) were considered to have potentially significant binding affinity. The 81 resulting 9-mer peptides were synthesized and tested for binding affinity with the REVEAL MHC-peptide binding assay (ProImmune, Oxford, United Kingdom). HLA-A2 binding affinity was determined by the ability of the peptides to stabilize the HLA-peptide complex. Based on the binding affinity measurements, 34 high- to medium-affinity HLA-A2 binding peptides were selected and used to generate ProVE MHC pentamers (ProImmune, Oxford, United Kingdom). To enable screening of this large number of pentamers, the pentamers were divided into five pools, each containing six or seven pentamers. In the initial screening with pooled pentamers, four HLA-A2-positive patients were screened after a clinical diagnosis of VZV reactivation after TCD alloSCT. The presence of viral DNA in plasma at the time of clinical observations of VZV reactivation was confirmed by real-time PCR on plasma samples as previously described (7). After informed consent was obtained, peripheral blood mononuclear cells (PBMCs) were cryopreserved and thawed and 0.5 × 106 cells were incubated with pentamers at a concentration of 0.03 mg/ml for 10 min at room temperature in RPMI medium supplemented with 2% fetal bovine serum. After the cells were washed twice, 8 μl of FluoroTag-phycoerythrin (PE) was added for 20 min of incubation at 4°C and the cells were counterstained with CD4, CD40, and CD19-fluorescein isothiocyanate (FITC). Flow cytometric analysis was performed on a FACScalibur fluorescence-activated cell sorter (FACS; Becton-Dickinson [BD], San Jose, CA). In one of four patients, pentamer pool 6, containing pentamers 61, 62, 64, 65, 66, and 67, was positive (0.06% of CD8 T cells); no other positive signals were observed. Staining with the individual pentamers revealed that pentamer 66, containing the epitope ALWALPHAA derived from the IE62 protein of VZV (IE62-ALW-A2) was responsible for the positive signal (0.06% of CD8 T cells, Fig. Fig.1B1B).Open in a separate windowFIG. 1.Screening with pentamers containing VZV-derived immunogenic epitopes. PBMCs of a patient after VZV reactivation following TCD alloSCT were incubated with pentamers and then stained with FluoroTag-PE to detect the pentamer-positive cells (A and B) and counterstained with CD4-, CD40-, and CD19-FITC. Pentamer staining of the CD4-, CD40-, and CD19-negative cells is shown. (A) PBMCs stained with pentamer 67 containing the epitope ALPHAAAAV, showing no specific staining. (B) PBMCs stained with pentamer 66 containing the epitope ALWALPHAA, showing specific staining. IE62-ALW-A2-specific T-cell clones were sorted into a single cell per well and expanded nonspecifically. The clones were stained with an irrelevant tetramer (C) and the IE62-ALW-A2 tetramer (D) in combination with CD8-FITC. Clones 1 and 2 were stained with a Vβ kit (BD) to demonstrate that clone 1 (E) and clone 2 (F) express different T-cell receptors. The results demonstrate that we isolated different T-cell clones that specifically stain with the IE62-ALW-A2 tetramer.To confirm the specificity of the IE62-ALW-A2-specific T cells, the pentamer-positive T cells were sorted into a single cell per well with a FACSDiva (BD) and expanded as previously described (5). The expanded T-cell clones were labeled specifically with the IE62-ALW-A2 PE-conjugated tetramer that was constructed as previously described (3) (Fig. (Fig.1D),1D), and Vβ analysis with the T-cell receptor Vβ repertoire kit (BD) showed that at least two different T-cell clones were isolated, demonstrating the oligoclonal origin of IE62-ALW-A2-positive T cells (Fig. 1E and F). To assess the cytolytic capacity of IE62-ALW-A2 T cells, chromium release assays were performed as described earlier (5). 51Cr-labeled Epstein-Barr virus (EBV) lymphoblastoid cell lines (LCLs) loaded with the IE62-ALW peptide were incubated with IE62-ALW-A2 T cells for 4 h. As demonstrated in Fig. Fig.2A,2A, HLA-A2-positive EBV LCLs loaded with the IE62-ALW-A2 peptide were lysed by both T-cell clones, whereas unloaded EBV LCLs were not lysed. To determine the avidity of the T-cell clones, the IE62-ALW-A2 peptide was titrated on EBV LCLs, and after 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells by standard enzyme-linked immunosorbent assay. Half-maximum IFN-γ production of the T-cell clones was observed when the stimulator cells were loaded with 10 ng/ml peptide, indicative of high-avidity T-cell clones (Fig. (Fig.2B).2B). To determine whether the T cells recognized cells endogenously expressing the IE-62-encoding gene, COS-A2 cells were transfected with Lipofectamine (Invitrogen, Carlsbad, CA) by using pcDNA vectors coding for different VZV genes, which were kindly provided by E. Wiertz (Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands). The transfected COS-A2 cells were used 24 h after transfection as stimulator cells in this assay. After 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells. IE62-ALW-A2 T-cell clones produced IFN-γ in response to COS-A2 cells endogenously expressing the IE62 protein, as well as COS-A2 cells pulsed with the IE62-ALW-A2 peptide. No IFN-γ was produced when the COS-A2 cells were transfected with the IE63-encoding gene of VZV or pulsed with an irrelevant peptide (Fig. (Fig.2C2C).Open in a separate windowFIG. 2.IE62-ALW-A2 T cells recognize IE62-ALW-A2 peptide-loaded target cells and target cells endogenously expressing IE62. (A) The cytolytic activity of IE62-ALW-A2-positive T-cell clones 1 and 2 was analyzed with the 51Cr release assay. T cells were incubated for 4 h with IE62-ALW-A2 peptide (pep)-loaded or unloaded, HLA-A2-positive EBV LCLs at an effector-to-target ratio of 10:1. (B) IE62-ALW-A2 T-cell clone 1 was stimulated with HLA-A2-positive EBV LCLs loaded with different concentrations of the IE62-ALW-A2 peptide. Release of IFN-γ (pg/ml) after 24 h of stimulation is shown. (C) IE62-ALW-A2 T-cell clones 1 and 2 were stimulated with HLA-A2-positive COS-A2 cells, left untreated, or loaded with the IE62-ALW-A2 peptide or with the IE4-ALR-B8 peptide as an irrelevant peptide or transfected with the IE63-encoding gene (COS-A2-IE63) or the IE62-encoding gene (COS-A2-IE62). Release of IFN-γ (picograms per milliliter) after 24 h of stimulation is shown.To determine whether IE62-ALW-A2-specific T cells were present in healthy individuals, cryopreserved PBMCs from 18 healthy, VZV-seropositive, HLA-A2-positive individuals were screened with the PE-conjugated VZV tetramer. PBMCs were labeled with tetramers for 15 min at 37°C in RPMI medium without phenol supplemented with 2% fetal bovine serum, washed, and analyzed with a FACScalibur. In 3 of these 18 serologically VZV-positive individuals, IE62-ALW-A2 tetramer-positive T cells could be detected (range, 0.01 to 0.02% of CD8 T cells). These data demonstrate that IE62-ALW-A2-specific T cells can be observed and that the frequency of these T cells is low under steady-state conditions in immunocompetent persons.To assess the frequency of IE62-ALW-A2-specific T cells in a cohort of patient who suffered from VZV reactivation following TCD alloSCT, 19 HLA-A2-positive patients after VZV reactivation following TCD alloSCT were screened by using the IE62-ALW-A2 tetramer. We screened these patients at a median of 47 days after the clinical diagnosis of VZV reactivation. In 8 of these 19 patients, IE62-ALW-A2-specific T cells could be directly detected ex vivo (mean, 0.04% [range, 0.01 to 0.11%] of CD8 T cells), indicating that this epitope is recognized in 42% of the HLA-A2-positive patients during VZV reactivation (Table (Table1).1). In VZV-seronegative patients (six screened), no IE62-ALW-A2 tetramer-positive cells could be detected.

TABLE 1.

Presence of IE62-ALW-A2-specific T cells in HLA-A2 patients after VZV reactivation following TCD alloSCT
PatientNo. of days after:
% IE62-ALW-A2+ T cells (SD)
TCD alloSCTVZV reactivationBefore IVSaAfter IVSb
118046Negative0.22 (0.15)
2190380.03 (0.01)0.51 (0.21)
354531NegativeNegative
429452Negative0.12 (0.06)
58238NegativeNegative
618316Negative0.01 (0.01)
7176810.02 (0.01)0.44 (0.06)
899350.11 (0.02)0.22 (0.04)
960188Negative0.01 (0.01)
109563NegativeNegative
119083NegativeNegative
1217948NegativeNegative
131,22462NegativeNegative
14173200.03 (0.01)0.22 (0.12)
15514210.03 (0.01)NDc
16635400.02 (0.01)ND
171618NegativeNegative
18174480.01 (0.00)0.02 (0.01)
1992490.04 (0.01)0.06 (0.02)
Open in a separate windowaMean percentages of IE62-ALW-A2 tetramer-positive cells of CD8 T cells of three tetramer stainings performed on different days are shown.bPBMCs were in vitro stimulated (IVS) for 7 days with IE62-ALW-A2 peptide, and the mean percentages of tetramer-positive cells of three to six stimulations are shown. A negative result was defined as <0.01% of CD8+ T cells.cND, no PBMCs were available to do the analysis.To verify the presence of the IE62-ALW-A2-specific T cells in the patient and donor cohort and to investigate whether individuals negative for IE62-ALW-A2-specific T cells were unable to mount a response against the epitope or whether the frequency of IE62-ALW-A2-specific T cells was too low to detect by FACS, the presence of these T cells was further measured after in vitro stimulation. PBMCs were cultured at a concentration of 1 × 106/ml in 24-well plates in Iscove''s modified Dulbecco''s medium supplemented with 10% human serum in the presence of IE62-ALW peptide (1 μg/ml), interleukin-2 (IL-2; 50 IU/ml), and IL-15 (10 ng/ml). After stimulation for 7 days, the presence of IE62-ALW-A2-specific T cells was reassessed by tetramer labeling. These in vitro stimulations demonstrated that IE62-ALW-A2 CD8 T cells were detectable in another four patients and confirmed the presence of IE62-ALW-A2-specific T cells in eight patients and three healthy, VZV-seropositive individuals with ex vivo-detectable IE62-ALW-A2-specific T cells (Table (Table1;1; Fig. 3A to D). Thus, in 12 (63%) of 19 patients, IE62-ALW-A2 CD8 T cells could be detected either by direct tetramer labeling or after in vitro expansion, indicating that this HLA-A2-restricted epitope is commonly used in HLA-A2-positive individuals.Open in a separate windowFIG. 3.Detection and kinetics of IE62-ALW-A2-specific T cells. PBMCs with detectable IE62-ALW-A2 T cells (A, left side), a low level of detectable tetramer-positive cells (B, left side), or no detectable tetramer-positive cells (C and D, left side) were in vitro stimulated for 7 days with IE62-ALW-A2 peptide (I μg/ml) in the presence of IL-2 and IL-15 (A to D, right side). Cells were stained with CD4-FITC, CD40-FITC, and IE62-ALW-A2 tetramer, and the percentages of CD8+ T cells that were IE62-ALW-A2 tetramer positive are indicated. CD8+ T cells are defined as CD4 CD40 lymphocytes. (E) PBMCs of a patient during the course of VZV reactivation following TCD alloSCT were stained with the IE62-ALW-A2 tetramer in combination with CD8-FITC. The percentages of IE62-ALW-A2-specific CD8 T cells before, during, and after VZV reactivation are shown. In the box, the presence of viral DNA in peripheral blood is shown as measured by real-time PCR at various time points. The bold line illustrates the use of valaciclovir to treat the VZV reactivation.To study whether the immune response against the IE62-ALW-A2 epitope correlated with clinical reactivation, the percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation in one patient. To determine the presence of viral DNA in plasma before and during the course of VZV reactivation, real-time PCR was performed on plasma samples derived at different time points. Six days prior to clinical signs of VZV reactivation, only 0.03% of the CD8 T cells were IE62-ALW-A2 specific. At 42 days after the onset of VZV reactivation, 0.23% of the CD8 T cells were IE62-ALW-A2 specific. After the VZV infection resolved, the percentage of IE62-ALW-A2-specific CD8 T cells declined to 0.09% at day 49 and 0.03% at day 145 after reactivation (Fig. (Fig.3D).3D). The T cells present at the peak of the response were predominantly HLA-DR positive, CD45RA negative, CCR7 negative, CD28 negative, and CD27 positive, consistent with an activated effector memory phenotype.In this study, we demonstrate that CD8 T cells specific for VZV are detectable without prior in vitro stimulation in patients with VZV reactivation following TCD alloSCT. We identified the ALWALPHAA peptide derived from the IE62-encoding gene of VZV as the first validated VZV-specific HLA class I-restricted immunogenic epitope by a pentamer-based epitope discovery method. The detection of the IE62-ALW peptide as an immunogenic peptide for VZV-specific CD8 T cells demonstrates the usefulness of this procedure for discovering new immunogenic virus- or tumor-specific epitopes. We demonstrated that, despite the low frequency, it is possible to detect VZV-specific CD8 T cells, allowing ex vivo analysis of the immune response to VZV infection, reactivation, and possibly VZV vaccination.  相似文献   
59.
The kinetochore-bound protein kinase Bub1 performs two crucial functions during mitosis: it is essential for spindle checkpoint signaling and for correct chromosome alignment. Interestingly, Bub1 mutations are found in cancer tissues and cancer cell lines. Using an isogenic RNA interference complementation system in transformed HeLa cells and untransformed RPE1 cells, we investigate the effect of structural Bub1 mutants on chromosome segregation. We demonstrate that Bub1 regulates mitosis through the same mechanisms in both cell lines, suggesting a common regulatory network. Surprisingly, Bub1 can regulate chromosome segregation in a kinetochore-independent manner, albeit at lower efficiency. Its kinase activity is crucial for chromosome alignment but plays only a minor role in spindle checkpoint signaling. We also identify a novel conserved motif within Bub1 (amino acids 458–476) that is essential for spindle checkpoint signaling but does not regulate chromosome alignment, and we show that several cancer-related Bub1 mutants impair chromosome segregation, suggesting a possible link to tumorigenesis.  相似文献   
60.
Large-conductance Ca2+-activated K+ (BK) channels are reported to be essential for NADPH oxidase-dependent microbial killing and innate immunity in leukocytes. Using human peripheral blood and mouse bone marrow neutrophils, pharmacological targeting, and BK channel gene-deficient (BK–/–) mice, we stimulated NADPH oxidase activity with 12-O-tetradecanoylphorbol-13-acetate (PMA) and performed patch-clamp recordings on isolated neutrophils. Although PMA stimulated NADPH oxidase activity as assessed by O2 and H2O2 production, our patch-clamp experiments failed to show PMA-activated BK channel currents in neutrophils. In our studies, PMA induced slowly activating currents, which were insensitive to the BK channel inhibitor iberiotoxin. Instead, the currents were blocked by Zn2+, which indicates activation of proton channel currents. BK channels are gated by elevated intracellular Ca2+ and membrane depolarization. We did not observe BK channel currents, even during extreme depolarization to +140 mV and after elevation of intracellular Ca2+ by N-formyl-L-methionyl-L-leucyl-phenylalanine. As a control, we examined BK channel currents in cerebral and tibial artery smooth muscle cells, which showed characteristic BK channel current pharmacology. Iberiotoxin did not block killing of Staphylococcus aureus or Candida albicans. Moreover, we addressed the role of BK channels in a systemic S. aureus and Yersinia enterocolitica mouse infection model. After 3 and 5 days of infection, we found no differences in the number of bacteria in spleen and kidney between BK–/– and BK+/+ mice. In conclusion, our experiments failed to identify functional BK channels in neutrophils. We therefore conclude that BK channels are not essential for innate immunity. killing assay; reactive oxygen species; BK-deficient mice; mice infection  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号