首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5117篇
  免费   485篇
  2023年   18篇
  2022年   44篇
  2021年   87篇
  2020年   61篇
  2019年   63篇
  2018年   83篇
  2017年   85篇
  2016年   124篇
  2015年   225篇
  2014年   275篇
  2013年   340篇
  2012年   427篇
  2011年   428篇
  2010年   302篇
  2009年   265篇
  2008年   358篇
  2007年   364篇
  2006年   336篇
  2005年   309篇
  2004年   291篇
  2003年   272篇
  2002年   244篇
  2001年   38篇
  2000年   38篇
  1999年   52篇
  1998年   83篇
  1997年   33篇
  1996年   50篇
  1995年   45篇
  1994年   50篇
  1993年   34篇
  1992年   22篇
  1991年   13篇
  1990年   15篇
  1989年   18篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   13篇
  1976年   8篇
  1975年   2篇
  1974年   3篇
排序方式: 共有5602条查询结果,搜索用时 622 毫秒
101.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   
102.
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.  相似文献   
103.
The palaeoecological visibility of historical human impact on natural ecosystems in tropical East Africa is strongly impeded by an overriding dominant signature of climate change at decadal‐to‐millennial time scales. Better knowledge of the relative magnitude and timing of present and past human impact and climate variability is, however, instrumental to properly assess the resilience, and recovery potential, of East Africa's natural ecosystems. Here, we briefly review comprehensive previous attempts to assess past ecosystem responses to climate change and human impact. We further discuss some key issues of climate‐human‐ecosystem relationships in a multidisciplinary framework and address some future challenges and outcomes, which may pave the way to a better understanding of past climate‐human‐ecosystem interaction‐ in tropical Africa.  相似文献   
104.
The pollen–ovule ratio (P/O) is commonly used to estimate the mode of sexual reproduction in flowering plants. In previous studies, a clear correspondence has been detected between this character and the degree of autogamy. We here investigate variation in this character and its expected correlates in the genus Veronica (Plantaginaceae). Pollen–ovule ratios of 45 species representing eleven percent of all the species in the genus were investigated and compared with results from crossing experiments from previous studies. In addition, multiple populations of 17 of the 45 studied species were sampled and a controlled‐environment experiment was conducted to evaluate the extent of intraspecific variation. Moreover, relationships between P/O and other primary and secondary reproductive characters of the Veronica flower were investigated in relation to a phylogenetic hypothesis in order to determine the phylogenetic constraints on reproductive characters. The differences in P/O among species correspond well to the diversity of mating systems in Veronica and correlate well with other floral characters such as corolla size. These characters together seem to allow a powerful and fast tool to infer mating systems. However, causes for intraspecific variation of P/O, such as different cytotypes, ecotypes or different growth conditions, need to be considered.  相似文献   
105.
Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.  相似文献   
106.
MicroRNA-155 (miR-155) is expressed in many cancers. It also executes evolutionary conserved functions in normal B cell development. We show that the Kaposi''s sarcoma-associated herpesvirus (KSHV) latency locus, which contains an ortholog of miR-155, miR-K12-11, complements B cell deficiencies in miR-155 knockout mice. Germinal center (GC) formation was rescued in spleen, lymph node, and Peyer''s patches. Immunoglobulin levels were restored. This demonstrates that KSHV can complement the normal, physiological function of miR-155.  相似文献   
107.
We investigated the ecological strategies exerted by the soil bacterium Burkholderia terrae BS001 at the hyphae of the soil saprotrophic fungus Lyophyllum sp. strain Karsten. Recently, this bacterium has been reported to form biofilms around, and to comigrate with, growing hyphae of Lyophyllum sp. strain Karsten. In addition, it was found to be able to utilize fungal metabolites. Here, we extend this work to shed some light on the interactions between the bacterial and fungal partner which allow ecological success for the former. In standing liquid microcosms inoculated with Lyophyllum sp. strain Karsten, we detected, upon prolonged incubation, the formation of a mycelial mat at the liquid–air interface. From this mat, primordia were formed after 4–6 weeks, which eventually resulted in mushrooms. However, upon addition of strain BS001 to the bulk liquid, mushroom formation from the fungal mat was clearly inhibited, as evidenced by (1) the formation of significantly lower numbers of primordia and (2) a delay of the onset of primordia formation. Moreover and importantly, the presence of strain BS001 caused the fungus to secrete large amounts of exudates at the mycelial mat, whereas such exudation was absent from control (uninoculated) or Escherichia coli K12- or Variovorax paradoxus BS64-inoculated microcosms. In the exudates, glycerol was the main carbonaceous component, and this compound could be easily utilized by strain BS001. Thus, in different experimental set-ups with the fungal partner, strain BS001 was shown to grow in the fungal exudates on the mat. The two fungal-interactive phenotypes were specific for B. terrae strain BS001, as the other bacteria used in our study, i.e. E. coli K12 and V. paradoxus BS64, did not exhibit any of these phenomena.  相似文献   
108.
A soil sterilization–reinoculation approach was used to manipulate soil microbial diversity and to assess the effect of the diversity of the ammonia-oxidizing bacteria (AOB) on the recovery of the nitrifying community to metal stress (zinc). Gamma-irradiated soil was inoculated with 13 different combinations of up to 22 different soils collected worldwide to create varying degrees of AOB diversity. Two months after inoculation, AOB amoA DGGE based diversity (weighted richness) varied more than 10-fold among the 13 treatments, the largest value observed where the number of inocula had been largest. Subsequently, the 13 treatments were either or not amended with ZnCl2. Initially, Zn amendment completely inhibited nitrification. After 6 months of Zn exposure, recovery of the potential nitrification activity in the Zn amended soils ranged from <10 % to >100 % of the potential nitrification activity in the corresponding non-amended soils. This recovery was neither related to DGGE-based indices of AOB diversity nor to the AOB abundance assessed 2 months after inoculation (p?>?0.05). However, recovery was significantly related (r?=?0.75) to the potential nitrification rate before Zn amendment and only weakly to the number of soil inocula used in the treatments (r?=?0.46). The lack of clear effects of AOB diversity on recovery may be related to an inherently sufficient diversity and functional redundancy of AOB communities in soil. Our data indicate that potential microbial activity can be a significant factor in recovery.  相似文献   
109.
It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium''s integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号