首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1677篇
  免费   111篇
  1788篇
  2022年   19篇
  2021年   31篇
  2020年   17篇
  2019年   13篇
  2018年   20篇
  2017年   24篇
  2016年   48篇
  2015年   56篇
  2014年   69篇
  2013年   73篇
  2012年   109篇
  2011年   98篇
  2010年   78篇
  2009年   59篇
  2008年   85篇
  2007年   68篇
  2006年   62篇
  2005年   65篇
  2004年   63篇
  2003年   61篇
  2002年   38篇
  2001年   37篇
  2000年   38篇
  1999年   36篇
  1998年   15篇
  1997年   17篇
  1996年   10篇
  1994年   16篇
  1992年   23篇
  1991年   31篇
  1990年   23篇
  1989年   24篇
  1988年   28篇
  1987年   33篇
  1986年   17篇
  1985年   22篇
  1984年   20篇
  1983年   17篇
  1980年   10篇
  1979年   16篇
  1977年   21篇
  1975年   9篇
  1974年   12篇
  1973年   13篇
  1972年   13篇
  1971年   12篇
  1969年   14篇
  1968年   13篇
  1967年   9篇
  1965年   9篇
排序方式: 共有1788条查询结果,搜索用时 0 毫秒
161.

Background  

A common survival strategy of microorganisms subjected to stress involves the generation of phenotypic heterogeneity in the isogenic microbial population enabling a subset of the population to survive under stress. In a recent study, a mycobacterial population of M. smegmatis was shown to develop phenotypic heterogeneity under nutrient depletion. The observed heterogeneity is in the form of a bimodal distribution of the expression levels of the Green Fluorescent Protein (GFP) as reporter with the gfp fused to the promoter of the rel gene. The stringent response pathway is initiated in the subpopulation with high rel activity.  相似文献   
162.
This study investigates the exposure of lead‐induced reactive oxygen species (ROS) generation, DNA damage, and apoptosis and also evaluates the therapeutic intervention using antioxidants in human renal proximal tubular cells (HK‐2 cells). Following treatment of HK‐2 cells with an increasing concentration of lead nitrate (0–50 μM) for 24 h, the intracellular ROS level increased whereas the GSH level decreased significantly in a dose‐dependent manner. Comet assay results revealed that lead nitrate showed the ability to increase the levels of DNA strand breaks in HK‐2 cells. Lead exposure also induced apoptosis through caspase‐3 activation at 30 μg/mL. Pretreatment with N‐acetylcysteine (NAC) and tannic acid showed a significant ameliorating effect on lead‐induced ROS, DNA damage, and apoptosis. In conclusion, lead induces ROS, which may exacerbate the DNA damage and apoptosis via caspase‐3 activation. Additionally, supplementation of antioxidants such as NAC and tannic acid may be used as salvage therapy for lead‐induced DNA damage and apoptosis in an exposed person.  相似文献   
163.
To determine whether, in the presence of constant insulin concentrations, a change in glucose concentrations results in a reciprocal change in endogenous glucose production (EGP), glucagon ( approximately 130 ng/l) and insulin ( approximately 65 pmol/l) were maintained at constant "basal" concentrations while glucose was clamped at approximately 5.3 mM (euglycemia), approximately 7.0 mM (sustained hyperglycemia; n = 10), or varied to create a "postprandial" profile (profile; n = 11). EGP fell slowly over the 6 h of the euglycemia study. In contrast, an increase in glucose to 7.13 +/- 0.3 mmol/l resulted in prompt and sustained suppression of EGP to 9.65 +/- 1.21 micromol x kg-1 x min-1. On the profile study day, glucose increased to a peak of 11.2 +/- 0.5 mmol/l, and EGP decreased to a nadir of 6.79 +/- 2.54 micromol x kg-1 x min-1 by 60 min. Thereafter, the fall in glucose was accompanied by a reciprocal rise in EGP to rates that did not differ from those observed on the euglycemic study day (11.31 +/- 2.45 vs. 12.11 +/- 3.21 micromol x kg-1 x min-1). Although the pattern of change of glucose differed markedly on the sustained hyperglycemia and profile study days, by design the area above basal did not. This resulted in equivalent suppression of EGP below basal (-1,952 +/- 204 vs. -1,922 +/- 246 mmol. kg-1. 6 h-1). These data demonstrate that, in the presence of a constant basal insulin concentration, changes in glucose within the physiological range rapidly and reciprocally regulate EGP.  相似文献   
164.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   
165.
Oxidation products of lipids, proteins, and DNA in the blood, plasma, and urine of rats were measured as part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative stress. This article is the second report of the nationwide Biomarkers of Oxidative Stress Study using acute CCl4 poisoning as a rodent model for oxidative stress. The time-dependent (2, 7, and 16 h) and dose-dependent (120 and 1200 mg/kg i.p.) effects of CCl4 on concentrations of lipid hydroperoxides, TBARS, malondialdehyde (MDA), isoprostanes, protein carbonyls, methionine sulfoxidation, tyrosine products, 8-hydroxy-2'-deoxyguanosine (8-OHdG), leukocyte DNA-MDA adducts, and DNA-strand breaks were investigated to determine whether the oxidative effects of CCl4 would result in increased generation of these oxidation products. Plasma concentrations of MDA and isoprostanes (both measured by GC-MS) and urinary concentrations of isoprostanes (measured with an immunoassay or LC/MS/MS) were increased in both low-dose and high-dose CCl4-treated rats at more than one time point. The other urinary markers (MDA and 8-OHdG) showed significant elevations with treatment under three of the four conditions tested. It is concluded that measurements of MDA and isoprostanes in plasma and urine as well as 8-OHdG in urine are potential candidates for general biomarkers of oxidative stress. All other products were not changed by CCl4 or showed fewer significant effects.  相似文献   
166.
Organic synthesis and recombinant DNA techniques have been used to situate a single 1,N6-ethenoadenine (epsilon Ade) DNA adduct at an amber codon in the genome of an M13mp19 phage derivative. The deoxyhexanucleotide d[GCT(epsilon A)GC] was chemically synthesized by the phosphotriester method. Mild nonaqueous conditions were employed for deprotection because of the unstable nature of the epsilon Ade adduct in aqueous basic milieu. Physical studies involving fluorescence, circular dichroism, and 1H NMR indicated epsilon Ade to be very efficiently stacked in the hexamer, especially with the 5'-thymine. Melting profile and circular dichroism studies provided evidence of the loss of base-pairing capabilities attendant with formation of the etheno ring. The modified hexanucleotide was incorporated into a six-base gap formed in the genome of an M13mp19 insertion mutant; the latter was constructed by blunt-end ligation of d(GCTAGC) in the center of the unique SmaI site of M13mp19. Phage of the insertion mutant, M13mp19-NheI, produced light blue plaques on SupE strains because of the introduced amber codon. Formation of a hybrid between the single-strand DNA (plus strand) of M13mp19-NheI with SmaI-linearized M13mp19 replicative form produced a heteroduplex with a six-base gap in the minus strand. The modified hexamer [5'-32P]d-[GCT(epsilon A)GC], after 5'-phosphorylation, was ligated into this gap by using bacteriophage T4 DNA ligase to generate a singly adducted genome with epsilon Ade at minus strand position 6274. Introduction of the radiolabel provided a useful marker for characterization of the singly adducted genome, and indeed the label appeared in the anticipated fragments when digested by several restriction endonucleases. Evidence that ligation occurred on both 5' and 3' sides of the oligonucleotide also was obtained. The adduct was introduced into a unique NheI site, and it was observed that this restriction endonuclease was able to cleave the adducted genome, albeit at a lower rate compared to unmodified DNA. The M13mp19-NheI genome containing epsilon Ade will be used as a probe for studying mutagenesis and repair of this DNA adduct in Escherichia coli.  相似文献   
167.
Mukherjee S  Basu S  Home P  Dhar G  Adhya S 《EMBO reports》2007,8(6):589-595
The mechanism of active transport of transfer RNA (tRNA) across membranes is largely unknown. Factors mediating the import of tRNA into the kinetoplast mitochondrion of the protozoon Leishmania tropica are organized into a multiprotein RNA import complex (RIC) at the inner membrane. Here, we present the complete characterization of the identities and functions of the subunits of this complex. The complex contains three mitochondrion- and eight nuclear-encoded subunits; six of the latter are necessary and sufficient for import. Antisense-mediated knockdown of essential subunits resulted in the depletion of mitochondrial tRNAs and inhibition of organellar translation. Functional complexes were reconstituted with recombinant subunits expressed in Escherichia coli. Several essential RIC subunits are identical to specific subunits of respiratory complexes. These findings provide new information on the evolution of tRNA import and the foundation for detailed structural and mechanistic studies.  相似文献   
168.
169.
170.
To determine whether regulation of fasting endogenous glucose production (EGP) and glucose disappearance (R(d)) are both abnormal in people with type 2 diabetes, EGP and R(d) were measured in 7 "severe" (SD), 9 "mild" (MD), and 12 nondiabetic (ND) subjects (12.7 +/- 0.6 vs. 8.1 +/- 0.4 vs. 5.1 +/- 0.4 mmol/l) after an overnight fast and during a hyperglycemic pancreatic clamp. Fasting insulin was higher in both the SD and MD than ND subjects, whereas fasting glucagon only was increased (P < 0.05) in SD. Fasting EGP, glycogenolysis, gluconeogenesis, and R(d) all were increased (P < 0.05) in SD but did not differ in MD or ND. On the other hand, when glucose ( approximately 11 mmol/l), insulin ( approximately 72 pmol/l), and glucagon ( approximately 140 pg/ml) concentrations were raised to values similar to those observed in the severe diabetic subjects, EGP was higher (P < 0.001) and R(d) lower (P < 0.01) in both SD and MD than in ND. The higher EGP in the SD and MD than ND during the clamp was the result of increased (P < 0.05) rates of glycogenolysis (4.2 +/- 1.7 vs. 3.5 +/- 1.0 vs. 0.0 +/- 0.8 micromol.kg(-1).min(-1)), since gluconeogenesis did not differ among groups. We conclude that neither glucose production nor disappearance is appropriate for the prevailing glucose and insulin concentrations in people with mild or severe diabetes. Both increased rates of gluconeogenesis (likely because of higher glucagon concentrations) and lack of suppression of glycogenolysis contribute to excessive glucose production in type 2 diabetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号