首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1673篇
  免费   111篇
  2022年   15篇
  2021年   31篇
  2020年   17篇
  2019年   13篇
  2018年   20篇
  2017年   24篇
  2016年   48篇
  2015年   56篇
  2014年   69篇
  2013年   73篇
  2012年   109篇
  2011年   98篇
  2010年   78篇
  2009年   59篇
  2008年   85篇
  2007年   68篇
  2006年   62篇
  2005年   65篇
  2004年   63篇
  2003年   61篇
  2002年   38篇
  2001年   37篇
  2000年   38篇
  1999年   36篇
  1998年   15篇
  1997年   17篇
  1996年   10篇
  1994年   16篇
  1992年   23篇
  1991年   31篇
  1990年   23篇
  1989年   24篇
  1988年   28篇
  1987年   33篇
  1986年   17篇
  1985年   22篇
  1984年   20篇
  1983年   17篇
  1980年   10篇
  1979年   16篇
  1977年   21篇
  1975年   9篇
  1974年   12篇
  1973年   13篇
  1972年   13篇
  1971年   12篇
  1969年   14篇
  1968年   13篇
  1967年   9篇
  1965年   9篇
排序方式: 共有1784条查询结果,搜索用时 15 毫秒
151.
Mukherjee S  Basu S  Home P  Dhar G  Adhya S 《EMBO reports》2007,8(6):589-595
The mechanism of active transport of transfer RNA (tRNA) across membranes is largely unknown. Factors mediating the import of tRNA into the kinetoplast mitochondrion of the protozoon Leishmania tropica are organized into a multiprotein RNA import complex (RIC) at the inner membrane. Here, we present the complete characterization of the identities and functions of the subunits of this complex. The complex contains three mitochondrion- and eight nuclear-encoded subunits; six of the latter are necessary and sufficient for import. Antisense-mediated knockdown of essential subunits resulted in the depletion of mitochondrial tRNAs and inhibition of organellar translation. Functional complexes were reconstituted with recombinant subunits expressed in Escherichia coli. Several essential RIC subunits are identical to specific subunits of respiratory complexes. These findings provide new information on the evolution of tRNA import and the foundation for detailed structural and mechanistic studies.  相似文献   
152.
Identification of quantitative trait loci (QTLs) controlling yield and yield-related traits in rice was performed in the F2 mapping population derived from parental rice genotypes DHMAS and K343. A total of 30 QTLs governing nine different traits were identified using the composite interval mapping (CIM) method. Four QTLs were mapped for number of tillers per plant on chromosomes 1 (2 QTLs), 2 and 3; three QTLs for panicle number per plant on chromosomes 1 (2 QTLs) and 3; four QTLs for plant height on chromosomes 2, 4, 5 and 6; one QTL for spikelet density on chromosome 5; four QTLs for spikelet fertility percentage (SFP) on chromosomes 2, 3 and 5 (2 QTLs); two QTLs for grain length on chromosomes 1 and 8; three QTLs for grain width on chromosomes1, 3 and 8; three QTLs for 1000-grain weight (TGW) on chromosomes 1, 4 and 8 and six QTLs for yield per plant (YPP) on chromosomes 2 (3 QTLs), 4, 6 and 8. Most of the QTLs were detected on chromosome 2, so further studies on chromosome 2 could help unlock some new chapters of QTL for this cross of rice variety. Identified QTLs elucidating high phenotypic variance can be used for marker-assisted selection (MAS) breeding. Further, the exploitation of information regarding molecular markers tightly linked to QTLs governing these traits will facilitate future crop improvement strategies in rice.  相似文献   
153.

DNA replication, repair, and recombination (DRRR) are the fundamental processes required for faithful transmission of genetic information within and between generations. The DRRR genes protect the cells from potential mutations and damage during the developmental phases and stress conditions. Thus, these genes indirectly regulate diverse important agronomic traits in a crop plant. A genome-wide survey of six DRRR pathway genes, namely, DNA replication, Base Excision Repair, Nucleotide Excision Repair, Homologous Recombination, Mismatch Excision Repair, and Non-Homologous End-Joining, identified 157 DRRR genes in chickpea. Phylogenetic analysis of these genes within the legume clades and model plant Arabidopsis identified 42 conserved DRRR genes exhibiting clade-specific evolutionary patterns. Integrating the gene-based association mapping with differential expression profiling identified the natural alleles of the potential DRRR genes, primarily regulating flowering and maturation time and involved in drought tolerance of chickpea. Identifying and understanding DRRR genes’ roles in regulating yield and stress tolerance traits in a vital grain legume like chickpea is requisite for its future crop improvement endeavors. Manipulation of promising functionally relevant DRRR genes will pave the way for simultaneous improvement in multiple beneficial agronomic traits in chickpea.

  相似文献   
154.
Madhurima Das  Gautam Basu 《Proteins》2015,83(9):1557-1562
Understanding factors that drive protein–protein association is of fundamental importance. We show that a single geometric parameter in crystal structures of protein–protein complexes, the angle between the electric dipole of one subunit and the partner‐generated electric field at the same subunit, linearly correlates with experimentally determined protein–protein association rates. Imprint of a dynamic kinetic process in a single static geometric parameter, associated with mutual electrostatic orientation of subunits in protein–protein complexes, is elegant and demonstrates the universality of electrostatic steering in attenuating protein–protein association rates. That the essence of a complex phenomenon could be captured by properties of the final crystal structure of the complex implies that the electrostatic orientations of protein subunits in crystal structures and the associated transition states are nearly identical. Further, the cosine of the angle, alone, is shown to be sufficient in predicting association rate constants, with accuracies comparable to currently available predictors that use more intricate methodologies. Our results offer mechanistic insights and could be useful in development of coarse‐grained models. Proteins 2015; 83:1557–1562. © 2015 Wiley Periodicals, Inc.  相似文献   
155.
The Indian pygmy field mouse, Mus terricolor, is a tiny, yet economically and ecologically important crop pest found throughout South-East Asia. There are no systematic reports exploring its reproductive physiology. We report the presence of distinct periods of annual reproductive activity and quiescence in M. terricolor. Body weight in males and females, relative weights of testis, epididymis and seminal vesicle in males, ovarian and uterine weight in females, gonadal histomorphic changes, testicular and ovarian cholesterol, sialic acid in epididymis, fructose in seminal vesicle, uterine protein content, melatonin in males and females, testosterone in males, estradiol, and progesterone in females were studied over a period of three years in both wild-caught and lab-acclimated mice. The number of Graafian follicles and corpora lutea, and plasma estradiol and progesterone, along with relative weights of ovary and uterus in females exhibited a peak in the months of October–January, compared to June. Based on histomorphic and hormonal status, the major reproductively active season is the winter (short-day breeding). There is a brief period of sub-maximal reproductive activity in April. M. terricolor is reproductively inactive in the summer, monsoons, and autumn. The results establish M. terricolor as a seasonal breeder in the field, with interesting implications for pest management.  相似文献   
156.
157.
Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood.  相似文献   
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号