首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   34篇
  2022年   2篇
  2021年   7篇
  2020年   11篇
  2019年   12篇
  2018年   15篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   22篇
  2013年   32篇
  2012年   31篇
  2011年   35篇
  2010年   25篇
  2009年   13篇
  2008年   22篇
  2007年   31篇
  2006年   24篇
  2005年   32篇
  2004年   28篇
  2003年   19篇
  2002年   23篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有517条查询结果,搜索用时 187 毫秒
51.
Interaction between Vitamin C (VitC) and transition metals can induce the formation of reactive oxygen species (ROS). VitC may also act as an ROS scavenger and as a metal chelant. To examine these possibilities, we tested in vivo the effect of two doses of VitC (1 and 30 mg/kg of mouse body weight) on the genotoxicity of known mutagens and transition metals. We used the alkaline version of the comet assay to assess DNA damage in peripheral white blood cells of mice. Animals were orally given either water (control), cyclophosphamide (CP), methyl methanesulfonate (MMS), cupric sulfate or ferrous sulfate. A single treatment with each VitC dose was administered after treatment with the mutagens or the metal sulfates. Both doses of VitC enhanced DNA damage caused by the metal sulfates. DNA damage caused by MMS was significantly reduced by the lower dose, but not by the higher dose of VitC. For CP, neither post-treatment dose of VitC affected the DNA damage level. These results indicate a modulatory role of Vitamin C in the genotoxicity/repair effect of these compounds. Single treatment with either dose of VitC showed genotoxic effects after 24 h but not after 48 h, indicating repair. Double treatment with VitC (at 0 and 24 h) induced a cumulative genotoxic response at 48 h, more intense for the higher dose. The results suggest that VitC can be either genotoxic or a repair stimulant, since the alkaline version of the comet assay does not differentiate "effective" strand breaks from those generated as an intermediate step in excision repair (incomplete excision repair sites). Further data is needed to shed light upon the beneficial/noxious effects of VitC.  相似文献   
52.
Low-copy number plasmids of bacteria rely on specific centromeres for regular partition into daughter cells. When also present on a second plasmid, the centromere can render the two plasmids incompatible, disrupting partition and causing plasmid loss. We have investigated the basis of incompatibility exerted by the F plasmid centromere, sopC, to probe the mechanism of partition. Measurements of the effects of sopC at various gene dosages on destabilization of mini-F, on repression of the sopAB operon and on occupancy of mini-F DNA by the centromere-binding protein, SopB, revealed that among mechanisms previously proposed, no single one fully explained incompatibility. sopC on multicopy plasmids depleted SopB by titration and by contributing to repression. The resulting SopB deficit is proposed to delay partition complex formation and facilitate pairing between mini-F and the centromere vector, thereby increasing randomization of segregation. Unexpectedly, sopC on mini-P1 exerted strong incompatibility if the P1 parABS locus was absent. A mutation preventing the P1 replication initiation protein from pairing (handcuffing) reduced this strong incompatibility to the level expected for random segregation. The results indicate the importance of kinetic considerations and suggest that mini-F handcuffing promotes pairing of SopB-sopC complexes that can subsequently segregate as intact aggregates.  相似文献   
53.
DE-310 is a macromolecular carrier conjugate containing an anti-tumor camptothecin derivative, DX-8951, conjugated to a water-soluble polymer by means of a peptide spacer. New assay methods have been developed to determine the polymer-bonded DX-8951 conjugate, free DX-8951, and Glycyl-DX-8951 in human plasma. Solid-phase extraction was used to extract free DX-8951 and Glycyl-DX-8951 from plasma, and LC/MS/MS (Method I) was used to determine the amount of each analyte. Protein precipitation was used to extract Conjugated DX-8951, which was then digested with thermolysin. HPLC (Method II) was used to determine the productive compound (Phenylalanyl-Glycyl-DX-8951). The lower limit of quantitation of DX-8951 was 50 pg/ml, of Glycyl-DX-8951 was 80 pg/ml, and of Conjugated DX-8951 was 100 ng/ml (as DX-8951 equivalent). Both methods showed satisfactory sensitivity, precision, and accuracy.  相似文献   
54.
Transgene elimination is a poorly studied phenomenon in plants. We made genetic and molecular studies of a transgenic dry bean line immune to bean golden mosaic geminivirus and a soybean line. In both lines, the transgenes were stable during the vegetative phase but were eliminated during meiosis. Due to its potential biotechnological value, this transgenic line was micropropagated by grafting and the vegetative copies were studied for more than two years. More than 300 plants of progeny were obtained during this period, demonstrating that the phenomenon of elimination was consistently repeated and offering an opportunity for detailed study of transgene elimination, including the characterization of the integration sites. Cloning and sequencing of the transgenic loci, reciprocal crosses to untransformed plants, genomic DNA blots, and GUS assays were performed in the transgenic lines. Based on the molecular and genetic characterization, possible mechanisms involved in transgene elimination include intrachromosomal recombination, genetic instability resulting from the tissue culture manipulations, and co-elimination of transgenes, triggered by a process of genome defense.  相似文献   
55.
56.
We describe here the construction of a 10-Gateway-based vector set applicable for high-throughput cloning and for expressing recombinant proteins in Escherichia coli. Plasmids bear elements required to produce recombinant proteins under control of the T7 promoter and encode different N-terminal partners. Since the vector set is derived from a unique backbone, a consistent comparison of the impact of fusion partner(s) on protein expression and solubility is easily amenable. Finally, a sequence encoding a six-histidine tag has been inserted to be in frame with the cloned open reading frame either at its C terminus or at the N terminus, giving the flexibility of choosing the six-histidine tag location for further purification. To test the applicability of our vector set, expression and solubility profile and six-histidine tag accessibility have been demonstrated for two Bacillus subtilis signaling proteins' encoding genes (SBGP codes E0508 and E0511).  相似文献   
57.
The static fluid mosaic model of biological membranes has been progressively complemented by a dynamic membrane model that includes phospholipid reordering in domains that are proposed to extend from nanometers to microns. Kinetic models for lipolytic enzymes have only been developed for homogeneous lipid phases. In this work, we develop a generalization of the well-known surface dilution kinetic theory to cases where, in a same lipid phase, both domain and nondomain phases coexist. Our model also allows understanding the changes in enzymatic activity due to a decrease of free substrate concentration when domains are induced by peptides. This lipid reordering and domain dynamics can affect the activity of lipolytic enzymes, and can provide a simple explanation for how basic peptides, with a strong direct interaction with acidic phospholipids (such as beta-amyloid peptide), may cause a complex modulation of the activities of many important enzymes in lipid signaling pathways.  相似文献   
58.
59.
60.
Aminoacyl-tRNA synthetases are key players in the interpretation of the genetic code. They constitute a textbook example of multi-domain proteins including insertion and terminal functional modules appended to one of the two class-specific active site domains. The non-catalytic domains usually have distinct roles in the aminoacylation reaction. Aquifex aeolicus leucyl-tRNA synthetase (LeuRS) is composed of a separated catalytic site and tRNA anticodon-binding site, which would represent one of the closest relics of the primordial aminoacyl-tRNA synthetase. Moreover, the essential catalytic site residues are split into the two different subunits. In all other class-I aminoacyl-tRNA synthetases, those two functional polypeptides are nowadays fused into a single protein chain. In this work, we report the isolation and the characterization, in Escherichia coli, of a novel oligomeric form (alphabeta)2 for A. aeolicus LeuRS, which is present in addition to the alphabeta heterodimer. A. aeolicus (alphabeta)2 LeuRS has been characterized by biochemical and biophysical methods. Native gel electrophoresis, mass spectrometry, analytical ultracentrifugation, and kinetic analysis confirmed that the (alphabeta)2 enzyme was a stable and active entity. By mass spectrometry we confirmed that the heterodimer alphabeta can bind one tRNALeu molecule whereas the heterotetramer (alphabeta)2 can bind two tRNALeu molecules. Active site titration and aminoacylation assays showed that two functional active sites are found per heterotetramer, suggesting that this molecular species might exist and be active in vivo. All those data suggest that the existence of the heterotetramer is certainly not an artifact of overexpression in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号