首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4794篇
  免费   307篇
  国内免费   309篇
  5410篇
  2024年   8篇
  2023年   60篇
  2022年   144篇
  2021年   271篇
  2020年   194篇
  2019年   208篇
  2018年   162篇
  2017年   134篇
  2016年   216篇
  2015年   315篇
  2014年   336篇
  2013年   360篇
  2012年   492篇
  2011年   400篇
  2010年   232篇
  2009年   226篇
  2008年   234篇
  2007年   189篇
  2006年   175篇
  2005年   139篇
  2004年   112篇
  2003年   98篇
  2002年   104篇
  2001年   84篇
  2000年   75篇
  1999年   70篇
  1998年   42篇
  1997年   41篇
  1996年   37篇
  1995年   42篇
  1994年   39篇
  1993年   24篇
  1992年   30篇
  1991年   33篇
  1990年   17篇
  1989年   16篇
  1988年   12篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1965年   1篇
排序方式: 共有5410条查询结果,搜索用时 15 毫秒
11.
We describe an in vivo screening assay that uses epidermal chitinase activity as the endpoint following a 7-day exposure of Uca pugilator to test chemicals. Chitinase, a chitinolytic enzyme, is the end product of endocrine cascades of a multi-hormonal system for control of crustacean molting. Wherever a molt-interfering agent adversely impacts the Y-organ-ecdysteroid receptor axis, the effect should be manifested by the activity of chitinase in the epidermis. Therefore, epidermal chitinase activity is an ideal endpoint for molt-interfering effects of xenobiotics. The validity of epidermal chitinase activity being used for such a purpose is supported by our finding that two injections of 20-hydroxyecdysone at 25 microg/g live weight induced a twofold increase in chitinase activity in the epidermis of U. pugilator. A total of nine chemicals were screened for molting hormone and anti-molting activities. o,p'-DDT was found to significantly inhibit epidermal chitinase activity while kepone and methoxychlor exhibited a tendency of inhibition of enzymatic activity. None of the remaining six chemicals, namely, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), atrazine, tributyltin (TBT), methoprene, dieldrin and permethrin, had an effect on epidermal chitinase activity.  相似文献   
12.
13.
Sandwich‐type hybrid carbon nanosheets (SCNMM) consisting of graphene and micro/mesoporous carbon layer are fabricated via a double template method using graphene oxide as the shape‐directing agent and SiO2 nanoparticles as the mesoporous guide. The polypyrrole synthesized in situ on the graphene oxide sheets is used as a carbon precursor. The micro/mesoporous strcutures of the SCNMM are created by a carbonization process followed by HF solution etching and KOH treatment. Sulfur is impregnated into the hybrid carbon nanosheets to generate S@SCNMM composites for the cathode materials in Li‐S secondary batteries. The microstructures and electrochemical performance of the as‐prepared samples are investigated in detail. The hybrid carbon nanosheets, which have a thickness of about 10–25 nm, high surface area of 1588 m2 g?1, and broad pore size distribution of 0.8–6.0 nm, are highly interconnected to form a 3D hierarchical structure. The S@SCNMM sample with the sulfur content of 74 wt% exhibits excellent electrochemical performance, including large reversible capacity, good cycling stability and coulombic efficiency, and good rate capability, which is believed to be due to the structure of hybrid carbon materials with hierarchical porous structure, which have large specific surface area and pore volume.  相似文献   
14.
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circDVL1 to be reduced in the serums and tissues from ccRCC patients, and to negatively correlate with ccRCC malignant features. Overexpression of circDVL1 inhibits proliferation, induces G1/S arrest, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circDVL1 overexpression suppresses ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circDVL1 serves as a sponge for oncogenic miR-412-3p, thereby preventing miR-412-3p-mediated repression of its target protocadherin 7 (PCDH7) in ccRCC cells. Collectively, our results demonstrate that circDVL1 exerts tumor-suppressive function during ccRCC progression through circDVL1/miR-412-3p/PCDH7 axis, and suggest that circDVL1 could be a novel diagnostic and prognositc marker and therapeutic target for ccRCC.  相似文献   
15.
16.
When working on the regulation of prostacyclin synthase (PGIS), we found that PGIS was selectively inhibited by peroxynitrite (ONOO-), a potent oxidant formed by the combination of superoxide anion and nitric oxide (NO) at a rate of diffusion-controlled. None of the cellular antioxidants studied (i.e. GSH, Vitamins C and E, and others) prevented the inhibition of ONOO- on PGIS. This unexpected behavior was explained by a catalytic reaction of the iron-thiolate center of PGIS with ONOO- anion. In contrast, ONOO- activated both thromboxane A2-synthase and cyclooxygenases. In addition, we demonstrated that sub-micromolar levels of ONOO- inhibited PGI2-dependent vasorelaxation and triggered a PGH2-dependent vasospasm, indicating that ONOO- increased PGH2 formation as a consequence of PGIS nitration. We have subsequently demonstrated that endogenous ONOO- caused PGIS nitration and TxA2 activation in several diseased conditions such as atherosclerotic vessels, hypoxia-reperfusion injury, cytokines-treated cells, diabetes, as well as hypertension. Since NO is produced physiologically it seems that excessive formation of superoxide not only eliminates the vasodilatory, growth-inhibiting, anti-thrombotic and anti-adhesive effects of NO and PGI2 but also allows and promotes an action of the potent vasoconstrictor, prothrombotic agent, growth promoter, and leukocyte adherer, PGH2. We conclude that the nitration of PGIS nitration might be a new pathogenic mechanism for superoxide-induced endothelium dysfunction often observed in vascular diseases such as atherosclerosis, hypertension, ischemia, endotoxic shock, and diabetes.  相似文献   
17.
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.  相似文献   
18.
19.
We report the synthesis and characterization of four cyclometalated iridium complexes based on carbazole and arylamine modified 2-phenylpyridine. The carbazole and arylamine groups are linked to 2-phenyl pyridine backbone to enhance the energy harvesting and transfer from host to guest materials. The electrochemical and photophysical properties of the complexes are studied and electroluminescent devices are fabricated. The results show that the complexes with ligands containing carbazole moieties have desirable phosphorescent properties. The device with complex 3 doped PVK (poly (vinylcarbazole)) as emission layer achieves maximum luminous efficiency of 6.56 cd A−1 and maximum brightness of 14448 cd m−2.  相似文献   
20.
Telomere Biology and Cellular Aging in Nonhuman Primate Cells   总被引:3,自引:0,他引:3  
To determine how cellular aging is conserved among primates, we analyzed the replicative potential and telomere shortening in skin fibroblasts of anthropoids and prosimians. The average telomere length of the New World primates Ateles geoffroyi (spider monkey) and Saimiri sciureus (squirrel monkey) and the Old World primates Macaca mulatta (rhesus monkey), Pongo pygmaeus (orangutan), and Pan paniscus (pigmy chimpanzee) ranged from 4 to 16 kb. We found that telomere shortening limits the replicative capacity of anthropoid fibroblasts and that the expression of human telomerase produced telomere elongation and the extension of their in vitro life span. In contrast the prosimian Lemur catta (ring-tailed lemur) had both long and short telomeres and telomere shortening did not provide an absolute barrier to immortalization. Following a transient growth arrest a subset of cells showing a reduced number of chromosomes overgrew the cultures without activation of telomerase. Here we show that the presence of continuous TTAGGG repeats at telomeres and rigorous control of replicative aging by telomere shortening appear to be conserved among anthropoid primates but is less effective in prosimian lemurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号