首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   7篇
  2021年   1篇
  2010年   1篇
  2008年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
It has now believed that chloroplasts arose from cyanobacteria,however,during endosymbiosis,the photosynthetic genes in chloroplasts have been reduced.How these changes occurred during plant evolution was the focus of the present study.Beginning with photosystem Ⅰ (PSI) genes,a homologous comparison of amino acid sequences of 18 subunits of PSI from 10 species of cyanobacteria,chloroplasts in 12 species of eucaryotic algae,and 28 species of plants (including bryophytes,pteridophytes,gymnospermae,dicotyledon and monocotyledon) was undertaken.The data showed that 18 genes of PSIcan be divided into two groups: Part Ⅰ including seven genes (psaA,psaB,psaC,psaI,psaJ,yct3 and ycf4) shared both by cyanobacteria and plant chloroplasts;Part Ⅱ containing another 11 genes (psaD,psaE,psaF,psaK,psaL,psaM,btpA,ycf37,psaG,psaH and psaN) appeared to have diversified in different plant groups.Among Part I genes,psaC,psaA and psaB had higher homology in all species of cyanobacteria and chloroplasts.Among Part II genes,only psaG,psaH and psaN emerged in seed plants.  相似文献   
22.
几种因素诱导鱼腥藻7120短藻丝体的形成   总被引:2,自引:2,他引:0  
丝状蓝藻鱼腥藻7120(Anabaena sp.PCC7120)中可成功表达外源基因,但其转化和表达效率不高,改变细胞的生理状态可能会影响外源基因的转化和表达效率。将鱼腥藻7120藻丝体通过几种因素诱导形成短藻丝体(具有25个左右细胞),并对其光合活性进行了测定。结果表明:红光和高温对鱼腥藻7120短藻丝体较为有效,且红光诱导在48h时,短藻丝体细胞数占总细胞数的比例达到85%;DCMU单独诱导效果不明显,适当浓度的DCMU+红光诱导时诱导效率略有增加;高温以45℃诱导12h比例最高,约达87%;高温45℃诱导时,对数生长后期的鱼腥藻7120较易形成短藻丝体。光合活性测定结果显示,诱导形成的短藻丝体光合放氧速率比正常营养藻丝体的低,这种具有光合放氧能力的短藻丝体显示出作为表达外源基因受体的可能性。  相似文献   
23.
The cMT-like promoter (stat O-P) was used for the expression of mMT- Ⅰ cDNA in cyanobacterium, Anabaena sp. PCC 7120, to enhance its metal-binding ability and specificity. Shuttle vector pKT-MRE was constructed and replicated in E. coli HB101, and triparental conjugate transfer was applied for transforming cyanobacterial cells. Sm-screening, Southern and Western blotting analysis were used for the identification of the transgenic cyanobacterium clones. Transgenic cyanobacterial metal-absorption ability, heavy metal-resistance and photosynthesis measurements in the medium containing heavy metal ion indicated that the expression of foreign mMT- I enhanced the cyanobactefial heavy metal-resistance to 1.5 times in the transgenic Anabaena sp. PCC 7120.  相似文献   
24.
发状念珠藻藻殖段的分化及其光合特性的研究   总被引:1,自引:0,他引:1  
Hormogonia of Nostoc flagelliforme is one of the developmental stages in the life cycle of cyanobacterium. High yields of pure hormogonia were obtained by weak light (the filaments were covered by sterilized sand for blocking light), red light, white light plus DCMU (3, 4-dichlorophenyl-1, 1-dimethylurea) in the culture. These pure fractions of hormogonia allowed the study of physiological measurements in comparison to vegetative filaments. The photosynthesis in the hormogonia and the vegetative filaments was characterized by fluorescence emission spectra at 77 K, absorption spectrum and oxygen evolution. Absorption spectrum of the hormogoia and vegetative filaments did not reveal difference. The data indicated the similarity of pigment contents between hormogonia and vegetative filaments. Some differences were observed in oxygen evolution of vegetative filaments and hormogonia in the temperature range of 15 ℃ to 45 ℃ and light intensity around 110 μmol·m-2·s-1 to 1200 μmol·m-2·s-1. The fluorescence emission spectra showed that energy distribution between the two photosystems in mature colonies was more balance than in hormogonia. The absorption of light energy in phycobilisomes and the transfer to the two photosystems in the hormogonia were more effective than in the mature colonies. It may be concluded that the formation of hormogonia affected on the structure and function of phytosynthesis.  相似文献   
25.
A recombinate plasmid pDC-ATGS was constructed, which contained the antisense fragment of glnA gene from Anabaena sp. PCC 7120 and transformed the unicellular cyanobactefium Synechococcus sp. PCC 7942. The foreign DNA was inserted into the site of glnA locus of the chromosome through the homologous recombination. By using neomyisin, a highly efficient ammonia secretion mutant was selected. After immobilized, the cells of the mutant within polyurethane (PU) foams, glutamine synthetase (GS) and NIt4+ secretory activity of GS, and its growth and photosynthesis were measured. It was shown that NH4+ secretion of the immobilized mutant was enhanced 156 folds which was much higher than that of free-living cells of the wild type. The activity of GS was decreased by 73.6%. Growth of the mutant was the same as that of the wild type. The activity of photosystem Ⅱ in the immobilized mutant cells increased by 44% with 77 K fluorescence spectrum measurement.  相似文献   
26.
分析了培养光强对转基因鱼腥藻生长和hTNF-α基因表达的影响,以及转基因鱼腥藻IB02的光合放氧活性、光系统Ⅰ及光系统Ⅱ活性。发现光强对转基因鱼腥藻IB02的生长和hTNF-α基因表达都有促进;hTNF-α基因在鱼腥藻中的表达率与真正光合、光系统Ⅰ和光系统Ⅱ活性存在一定的联系。hTNF-α基因表达同时对宿主的光合放氧特性也产生了显著的影响,与正对照相比转基因藻光呼吸速率增强68%,饱和点降低66%,说明转基因鱼腥藻的代谢负荷增加,并在低光强下生长比野生型快。  相似文献   
27.
仙鹤藓属(Atrichum)藓类植物组织培养再生体系的建立   总被引:2,自引:0,他引:2  
报道了仙鹤藓(Atrichum undulatum(Hedw.)P.Beauv.)和仙鹤藓小形变种(Atrichum undulatum var.minus(Hedw.)Par.)的组织培养再生体系的建立。为研究仙鹤藓属(Atrichum)藓类愈伤组织的诱导和再分化,将仙鹤藓和仙鹤藓小形变种原丝体接种在含有4%葡萄糖和0.2-2.0mg/L 6-BA的MS培养基上,培养一个月后,成功地诱导出疏松、易碎的绿色愈伤组织。愈伤组织诱导和常规继代培养较适合的培养基为含4%葡萄糖和1-2mg/L 6-BA的MS培养基。当将继代培养5次的脱分化藓类愈伤组织转移到含4%葡萄糖但无任何激素的MS培养基上时,能再分化形成原丝体,而在无任何碳源的Benecke培养基土培养时,能再分化形成经原丝体阶段发育来的直立配子体。  相似文献   
28.
Pro-urokinase (pro-UK) gene was ligated with promoter PpsbA and cloned into the integrative vector pTZ18-8, which contained a psbB gene fragment from Synechocystis sp. PCC 6803 as the integrative platform. The expression vector was transferred into Synechococcus sp.PCC 7002 via natural transformation. Transformants conferring ampicillin resistance were amplified and then analyzed. DNA dot blot and Western blot demonstrated the existence and expression of pro-UK gene. The supernatant from crude cell extract showed thrombolytic activity, indicating that the expression product did not form inclusion bodies. According to the results of ELISA, expression of pro-UK was about 2×10 -5 -3×10 -5 g per gram of wet cells.  相似文献   
29.
聚球藻7002在光生物反应器中的光自养培养   总被引:2,自引:0,他引:2  
通过对聚球藻7002在光生物反应器中的培养,研究了光强在聚球藻7002培养液中的衰减规律,得到了培养过程光强随藻细胞浓度和光程距离变化的关系式,即I=I0exp[-(-0.0239+0.0777OD750)·L]。并对培养过程特性及培养温度、外加CO2浓度和光照强度对藻细胞生长的影响进行了较为详细的研究,得到了反应器中较为适宜的聚球藻7002的培养条件,藻细胞培养密度达到3.4g/L(干重),体积产率达到0.57g/(L·d)的较高水平。  相似文献   
30.
The structures of photosynthetic apparatuses such as leaves, chloroplasts and symbiotic cyanobacterum (blue-green algae) in Azolla-Anabaena azollae associations (Azolla imbricata (Roxb) Nakai) which occur in paddy fields of China were examined using light, scanning and transmission electrn microscopy. Some comparisons were made with A. filiculoides, A. japonica, A. caroliniana, A. pinnata and A. mexicana. Cross sections of A. imbricata were observed by light microscopy and the symbiotic association between the eukaryotic water fern and its prokaryotic blue-green algal symbiont, an Anabaena, was studied. The symbiotic cyanobacterum cells occur not only in a mature leaf cavity, but also in early stages of leaf development, around leaf primordia, and even in macrospores. Under scanning electron microscopy (SEM) it is possible to see stomata and nipples on the surface of dorsal lobes of the fern. The species in the subgenus Euazolla (i.e.A. filiculoides, A. japonica, A. caroliniana and A. mexicana) have rounded nipples, but those in the subgenus Rizosperma (i.e.A. imbricata and A. pinnta) prolate ones. This morphological character is first reported to be related to the taxonomic system. The result of the observation with transmission electron microscopy (TEM) shows that A. filiculoides contains more thylakoides in chloroplasts than A. imbricata does, and the grana lamellae have more stacks in the former than in the latter. The differences are in agreement with the differentiation of the two species in photosynthetic capacity. This may be one of the differences between the two subgenera. The ultrastructures of the symbiotic cyanobacterum are similar to those of free-living Anabaena. The vegetative cells show a typical bilayered cell wall and the heterocysts have a thikened wall. The thylakoid membranes in both heterocysts and vegetative cells are oftenseen forming whirls. During the division of vegetative cells, their contents aggregate and then redistribute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号