全文获取类型
收费全文 | 9196篇 |
免费 | 615篇 |
国内免费 | 640篇 |
专业分类
10451篇 |
出版年
2024年 | 24篇 |
2023年 | 103篇 |
2022年 | 248篇 |
2021年 | 440篇 |
2020年 | 303篇 |
2019年 | 374篇 |
2018年 | 364篇 |
2017年 | 275篇 |
2016年 | 346篇 |
2015年 | 558篇 |
2014年 | 659篇 |
2013年 | 717篇 |
2012年 | 804篇 |
2011年 | 757篇 |
2010年 | 441篇 |
2009年 | 413篇 |
2008年 | 468篇 |
2007年 | 394篇 |
2006年 | 363篇 |
2005年 | 303篇 |
2004年 | 260篇 |
2003年 | 238篇 |
2002年 | 189篇 |
2001年 | 174篇 |
2000年 | 153篇 |
1999年 | 142篇 |
1998年 | 104篇 |
1997年 | 95篇 |
1996年 | 88篇 |
1995年 | 76篇 |
1994年 | 84篇 |
1993年 | 66篇 |
1992年 | 71篇 |
1991年 | 66篇 |
1990年 | 66篇 |
1989年 | 51篇 |
1988年 | 32篇 |
1987年 | 35篇 |
1986年 | 22篇 |
1985年 | 27篇 |
1984年 | 10篇 |
1983年 | 16篇 |
1982年 | 8篇 |
1981年 | 4篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1972年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Tingting Gao Zhan Zhou Jianyong Yu Jing Zhao Guiling Wang Dianxue Cao Bin Ding Yiju Li 《Liver Transplantation》2019,9(8)
Developing advanced supercapacitors with both high areal and volumetric energy densities remains challenging. In this work, self‐supported, compact carbon composite electrodes are designed with tunable thickness using 3D printing technology for high‐energy‐density supercapacitors. The 3D carbon composite electrodes are composed of the closely stacked and aligned active carbon/carbon nanotube/reduced graphene oxide (AC/CNT/rGO) composite filaments. The AC microparticles are uniformly embedded in the wrinkled CNT/rGO conductive networks without using polymer binders, which contributes to the formation of abundant open and hierarchical pores. The 3D‐printed ultrathick AC/CNT/rGO composite electrode (ten layers) features high areal and volumetric mass loadings of 56.9 mg cm?2 and 256.3 mg cm?3, respectively. The symmetric cell assembled with the 3D‐printed thin GO separator and ultrathick AC/CNT/rGO electrodes can possess both high areal and volumetric capacitances of 4.56 F cm?2 and 10.28 F cm?3, respectively. Correspondingly, the assembled ultrathick and compact symmetric cell achieves high areal and volumetric energy densities of 0.63 mWh cm?2 and 1.43 mWh cm?3, respectively. The all‐component extrusion‐based 3D printing offers a promising strategy for the fabrication of multiscale and multidimensional structures of various high‐energy‐density electrochemical energy storage devices. 相似文献
982.
AimsOuabain has been reported to increase the secretion of atrial natriuretic peptide (ANP) in vitro. However, the mechanism by which ouabain increases ANP secretion is not well known. Therefore, the purpose of the present study was to investigate the underlying mechanism of ouabain-stimulated ANP secretion.Main methodsA perfused beating rabbit atrial model was used. The ANP and ET-1 levels in the atrial perfusates were measured by radioimmunoassays.Key findingsOuabain (1.0, 3.0 and 6.0 μmol/L) significantly increased atrial ANP secretion in a dose-dependent manner, while the endothelin (ET)-1 levels were increased by the higher doses (3.0 and 6.0 μmol/L) of ouabain. Ouabain-increased atrial ET-1 release was blocked by PD98059 (30.0 μmol/L), an inhibitor of mitogen-activated protein kinase (MAPK). Nifedipine (1.0 μmol/L), an inhibitor of L-type Ca2+ channels, completely abolished ouabain-increased ANP secretion without changing the ouabain-induced atrial dynamics. KB-R7943 (3.0 μmol/L), an inhibitor of Na+–Ca2+ exchangers, completely blocked the effects of ouabain-increased atrial dynamics, but did not modulate ouabain-increased ANP secretion. ET-1 significantly stimulated atrial ANP release in a dose-dependent manner. The effects of ET-1 and ouabain on ANP secretion were completely blocked by BQ788 (0.3 μmol/L), an inhibitor of ET-1 type B (ETB) receptors, but not by BQ123 (0.3 μM), an inhibitor of ET-1 type A receptors. Ouabain-increased atrial ANP secretion was blocked by PD98059 and indomethacin (30.0 μmol/L), an inhibitor of cyclooxygenase.SignificanceOuabain significantly stimulated atrial ANP secretion via an ET-1-ETB receptor-mediated pathway involving MAPK signaling pathway activation and prostaglandin formation. 相似文献
983.
Chen Ding Jing Jiang Junying Wei Wanlin Liu Wei Zhang Mingwei Liu Tianyi Fu Tianyuan Lu Lei Song Wantao Ying Cheng Chang Yangjun Zhang Jie Ma Lai Wei Anna Malovannaya Lijun Jia Bei Zhen Yi Wang Fuchu He Xiaohong Qian Jun Qin 《Molecular & cellular proteomics : MCP》2013,12(8):2370-2380
The current in-depth proteomics makes use of long chromatography gradient to get access to more peptides for protein identification, resulting in covering of as many as 8000 mammalian gene products in 3 days of mass spectrometer running time. Here we report a fast sequencing (Fast-seq) workflow of the use of dual reverse phase high performance liquid chromatography - mass spectrometry (HPLC-MS) with a short gradient to achieve the same proteome coverage in 0.5 day. We adapted this workflow to a quantitative version (Fast quantification, Fast-quan) that was compatible to large-scale protein quantification. We subjected two identical samples to the Fast-quan workflow, which allowed us to systematically evaluate different parameters that impact the sensitivity and accuracy of the workflow. Using the statistics of significant test, we unraveled the existence of substantial falsely quantified differential proteins and estimated correlation of false quantification rate and parameters that are applied in label-free quantification. We optimized the setting of parameters that may substantially minimize the rate of falsely quantified differential proteins, and further applied them on a real biological process. With improved efficiency and throughput, we expect that the Fast-seq/Fast-quan workflow, allowing pair wise comparison of two proteomes in 1 day may make MS available to the masses and impact biomedical research in a positive way.The performance of mass spectrometry has been improved tremendously over the last few years (1–3), making mass spectrometry-based proteomics a viable approach for large-scale protein analysis in biological research. Scientists around the world are striving to fulfill the promise of identifying and quantifying almost all gene products expressed in a cell line or tissue. This would make mass spectrometry-based protein analysis an approach that is compatible to the second-generation mRNA deep-seq technique (4, 5).Two liquid chromatography (LC)-MS strategies have been employed to achieve deep proteome coverage. One is a single run with a long chromatography column and gradient to take advantage of the resolving power of HPLC to reduce the complexity of peptide mixtures; the other is a sequential run with two-dimensional separation (typically ion-exchange and reverse phase) to reduce peptide complexity. It was reported by two laboratories that 2761 and 4500 proteins were identified with a 10 h chromatography gradient on a dual pressure linear ion-trap orbitrap mass spectrometer (LTQ Orbitrap Velos)(6–8). Similarly, 3734 proteins were identified using a 8 h gradient on a 2 m long column with a hybrid triple quadrupole - time of flight (Q-TOF, AB sciex 5600 Q-TOF)(9) mass spectrometer. The two-dimensional approach has yielded more identification with longer time. For example, 10,006 proteins (representing over 9000 gene products, GPs)1 were identified in U2OS cell (10), and 10,255 proteins (representing 9207 GPs) from HeLa cells (11). It took weeks (for example, 2–3 weeks) of machine running time to achieve such proteome coverage, pushing proteome analysis to the level that is comparable to mRNA-seq. With the introduction of faster machines, human proteome coverage now has reached the level of 7000–8500 proteins (representing 7000–8000 GPs) in 3 days (12). Notwithstanding the impressive improvement, the current approach using long column and long gradient suffers from inherent limitations: it takes long machine running time and it is challenging to keep reproducibility among repeated runs. Thus, current throughput and reproducibility have hindered the application of in-depth proteomics to traditional biological researches. A timesaving approach is in urgent need.In this study, we used the first-dimension (1D) short pH 10 RP prefractionation to reduce the complexity of the proteome (13), followed by sequential 30 min second-dimension (2D) short pH 3 reverse phase-(RP)-LC-MS/MS runs for protein identification (14). The results demonstrated that it is possible to identify 8000 gene products from mammalian cells within 12 h of total MS measurement time by applying this dual-short 2D-RPLC-MS/MS strategy (Fast sequencing, Fast-seq). The robustness of the strategy was revealed by parallel testing on different MS systems including quadrupole orbitrap mass spectrometer (Q-Exactive), hybrid Q-TOF (Triple-TOF 5600), and dual pressure linear ion-trap orbitrap mass spectrometer (LTQ-Orbitrap Velos), indicating the inherent strength of the approach as to merely taking advantage of the better MS instruments. This strategy increases the efficiency of MS sequencing in unit time for the identification of proteins. We achieved identification of 2200 proteins/30 mins on LTQ-Orbitrap Velos, 2800 proteins/30 mins on Q-Exactive and Triple-TOF 5600 respectively. We further optimized Fast-seq and worked out a quantitative-version of the Fast-seq workflow: Fast-quantification (Fast-quan) and applied it for protein abundance quantification in HUVEC cell that was treated with a drug candidate MLN4924 (a drug in phase III clinical trial). We were able to quantify > 6700 GPs in 1 day of MS running time and found 99 proteins were up-regulated with high confidence. We expect this efficient alternative approach for in-depth proteome analysis will make the application of MS-based proteomics more accessible to biological applications. 相似文献
984.
Bing SongLei Zhang Xiao-jing LiuChong Ding Li-ling WuYe-Hua Gan Guang-yan Yu 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(4):550-560
Purpose: Proteomic analysis of secretions from transplanted or non-transplanted submandibular glands in patients with severe keratoconjunctivitis sicca and tears from normal eyes. Experimental design: Secretions from submandibular glands transplanted to replace lacrimal glands and non-transplanted submandibular glands were collected at 1 year from 5 patients with severe keratoconjunctivitis sicca undergoing transplantation, and tears were collected from 3 normal subjects. 2-D electrophoresis (2-DE), then mass spectrometry was used to identify proteins. Western blot analysis was used to confirm protein expression. Results: We identified 34 and 11 distinct proteins in the saliva from transplanted submandibular glands and tears, respectively. The saliva from transplanted submandibular glands contained almost all the proteins abundant in tear fluid. The functions of identified proteins in the saliva from transplanted submandibular gland were mainly immune response and anti-bacterial. In total, 7 proteins showed differential expression between the saliva of transplanted and non-transplanted submandibular glands. The upregulation of short palate, lung and nasal epithelium carcinoma-associated protein 2 and carbonic anhydrase VI was confirmed by Western blot analysis. Conclusions: Identified proteins in saliva from transplanted submandibular glands may protect ocular structures. These findings can help in understanding the functional status of transplanted submandibular glands. 相似文献
985.
Xuexue Chen Yanglin Ding Yongqing Yang Chunpeng Song Baoshan Wang Shuhua Yang Yan Guo Zhizhong Gong 《植物学报(英文版)》2021,63(1):53-78
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields. 相似文献
986.
MicroRNAs (miRNAs)是一类非编码的小分子单链RNA,通过与靶基因的mRNA结合,抑制mRNA的翻译,参与多种生物学过程.本实验室前期通过高通量测序发现90日龄牦牛胚胎的背最长肌中miR-383的表达量显著高于成年牦牛.为探究miR-383在牦牛骨骼肌发育中的分子功能和机制,本研究对miR-383的靶基因进行预测,并进行生物信息学分析.通过TargetScan、miRDB和miRanda 3个软件预测了miR-383的靶基因,然后合并miRTarbase数据库中已被证实的靶基因作为基因集,分别用DAVID和KOBAS3.0在线软件对基因集进行功能注释(GO分析)和Pathway信号通路富集分析.结果 表明,牦牛miR-383序列在各物种间高度保守,靶基因功能富集于CD8阳性T细胞增殖的调控、核糖核蛋白复合物定位和负调控T细胞分化等生物学过程.信号通路分析发现靶基因的信号通路显著富集于PI3K-Ak、AMPK、FoxO和Focal adhesion等与肌肉发育相关的信号通路中.该研究结果将为miR-383功能及调控机制的深入研究提供参考依据,也为解析牦牛肌肉发育的分子机制提供新的研究方向. 相似文献
987.
Xingyun Xu Rui Wang Zongbing Hao Guanghui Wang Chenchen Mu Jianqing Ding Wanping Sun Haigang Ren 《Journal of cellular physiology》2020,235(2):869-879
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression. 相似文献
988.
Rui Jia Qinghua Pan Shilei Ding Liwei Rong Shan-Lu Liu Yunqi Geng Wentao Qiao Chen Liang 《Journal of virology》2012,86(24):13697-13707
Interferon-inducible transmembrane (IFITM) protein family members IFITM1, -2, and -3 restrict the infection of multiple enveloped viruses. Significant enrichment of a minor IFITM3 allele was recently reported for patients who were hospitalized for seasonal and 2009 H1N1 pandemic flu. This IFITM3 allele lacks the region corresponding to the first amino-terminal 21 amino acids and is unable to inhibit influenza A virus. In this study, we found that deleting this 21-amino-acid region relocates IFITM3 from the endosomal compartments to the cell periphery. This finding likely underlies the lost inhibition of influenza A virus that completes its entry exclusively within endosomes at low pH. Yet, wild-type IFITM3 and the mutant with the 21-amino-acid deletion inhibit HIV-1 replication equally well. Given the pH-independent nature of HIV-1 entry, our results suggest that IFITM3 can inhibit viruses that enter cells via different routes and that its N-terminal region is specifically required for controlling pH-dependent viruses. 相似文献
989.
The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration 下载免费PDF全文
Jian‐Kang Liu Hao‐Wu Chang Yue Liu Yu Qin Yu‐Han Ding Lan Wang Yue Zhao Ming‐Zhe Zhang Sheng‐Nan Cao Le‐Tao Li Wei Liu Gui‐Hua Li Qing‐Ming Qin 《Environmental microbiology》2018,20(5):1794-1814
The process of initiation of host invasion and survival of some foliar phytopathogenic fungi in the absence of external nutrients on host leaf surfaces remains obscure. Here, we demonstrate that gluconeogenesis plays an important role in the process and nutrient‐starvation adaptation before the pathogen host invasion. Deletion of phosphoenolpyruvate c arboxyk inase gene BcPCK1 in gluconeogenesis in Botrytis cinerea, the causative agent of grey mould, resulted in the failure of the ΔBcpck1 mutant conidia to germinate on hard and hydrophobic surface and penetrate host cells in the absence of glucose, reduction in conidiation and slow conidium germination in a nutrient‐rich medium. The wild‐type and ΔBcpck1 conidia germinate similarly in the presence of glucose (higher concentration) as the sole carbon source. Conidial glucose‐content should reach a threshold level to initiate germination and host penetration. Infection structure formation by the mutants displayed a glucose‐dependent fashion, which corresponded to the mutant virulence reduction. Exogenous glucose or complementation of BcPCK1 completely rescued all the developmental and virulence defects of the mutants. Our findings demonstrate that BcPCK1 plays a crucial role in B. cinerea pathogenic growth and virulence, and provide new insights into gluconeogenesis mediating pathogenesis of plant fungal pathogens via initiation of conidial germination and host penetration. 相似文献
990.