首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   40篇
  国内免费   1篇
  2024年   2篇
  2023年   9篇
  2022年   16篇
  2021年   24篇
  2020年   22篇
  2019年   26篇
  2018年   27篇
  2017年   25篇
  2016年   33篇
  2015年   37篇
  2014年   49篇
  2013年   71篇
  2012年   70篇
  2011年   73篇
  2010年   52篇
  2009年   40篇
  2008年   45篇
  2007年   25篇
  2006年   32篇
  2005年   32篇
  2004年   21篇
  2003年   21篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有806条查询结果,搜索用时 31 毫秒
101.
Rhizoctonia solani and Phytophthora capsici are two of the most destructive phytopathogens occurring worldwide and are only partly being managed by traditional control strategies. Fluorescent Pseudomonas isolates PGC1 and PGC2 were checked for the antifungal potential against R. solani and P. capsici. Both the isolates were screened for the ability to produce a range of antifungal compounds. The results of this study indicated the role of chitinase and β-1,3-glucanase in the inhibition of R. solani, however, antifungal metabolites of a non-enzymatic nature were responsible for inhibition of P. capsici. The study confirmed that multiple and diverse mechanisms are adopted by the same antagonist to suppress different phytopathogens, as evidenced in case of R. solani and P. capsici.  相似文献   
102.
The test statistics are proposed for testing the equality of the coefficients of variation of two normal populations based on independent samples. The asymptotic distributions of the statistics are approximated by well-known distributions. The empirical sizes and powers of these statistics are computed and compared.  相似文献   
103.
104.
Dual-specificity tyrosine phosphorylation-related kinase 1A (DYRK1A) is a dual-specificity protein kinase that catalyses phosphorylation and autophosphorylation. Higher DYRK1A expression correlates with cancer, in particular glioblastoma present within the brain. We report here the synthesis and biological evaluation of new heterocyclic diphenolic derivatives designed as novel DYRK1A inhibitors. The generation of these heterocycles such as benzimidazole, imidazole, naphthyridine, pyrazole-pyridines, bipyridine, and triazolopyrazines was made based on the structural modification of the lead DANDY and tested for their ability to inhibit DYRK1A. None of these derivatives showed significant DYRK1A inhibition but provide valuable knowledge around the importance of the 7-azaindole moiety. These data will be of use for developing further structure-activity relationship studies to improve the selective inhibition of DYRK1A.  相似文献   
105.
Less than 0.2% of all spider species live in close associations with conspecifics. Among these, subsocial spiders show characteristics of both solitary spiders (e.g., individuals disperse for breeding) and social spiders (e.g., prolonged cooperative behaviours at least prior to independent reproduction). Dispersing individuals build small webs, usually with one inhabitant, whereas colonies are large webs with plant debris and harbouring multiple females. We studied the spatiotemporal dynamics of dispersal in the subsocial spider Anelosimus baeza. We followed the occupancy of all colonies and dispersal webs over the breeding season by mapping the number and sex of spiders with respect to their location in three dimensions. We studied the settlement patterns of new webs and fluctuation in web occupancy through movement between occupied and abandoned webs of colonies and dispersal webs. The occupancy of webs was highly dynamic with changes occurring at small time scales. The similarity in the patterns of web occupancy by females among dispersal webs was partially explained by their spatial and their temporal proximity. Our results suggest that dispersal webs may be used by spiders as a temporary refuge by both sexes during the breeding season. Patterns described here suggest new approaches to dispersal studies in group living spiders.  相似文献   
106.
Anthropogenic disturbances adversely affect populations of rare and endemic plants, resulting in reduction of their population size and performance. Among different plant groups, deceptive terrestrial orchids are vulnerable and possess greater extinction risks because of rarity in occurrence. To understand the response of food‐deceptive terrestrial orchids to disturbances, we selected Dactylorhiza hatagirea as our representative species, which is endemic to Himalaya, and studied its natural populations. This species is rare for being habitat specific, pollination limited and threatened in its natural habitats. We tested the hypothesis that disturbances lead to reduction in population size and plant performance of food‐deceptive terrestrial orchids. For assessing the impact of disturbance, two contrasting groups, heavily devastated (HD) and lightly devastated (LD), were identified on the basis of frequency and intensity of disturbance (harvesting of plant for tubers) by interviewing local people, medicinal plant extractors and shepherds. HD sites, in comparison to LD sites, were found to have smaller population sizes, but showed an increase in plant growth traits (plant height, specific leaf area, leaf N and specific shoot length). Similarly, plants at HD sites were found to have invested less in inflorescence (inflorescence size, inflorescence length, inflorescence length fraction and flowers per length), but despite that showed higher reproductive success. This was a clear indication of enhanced performance of its populations driven by disturbances. Our findings suggested that food‐deceptive species in small populations tend to reduce the probability of population extinction and have the capability to recover rapidly if conserved in time.  相似文献   
107.

Background

Characterization of partially collapsed protein conformations at atomic level is a daunting task due to their inherent flexibility and conformational heterogeneity. T7 bacteriophage endolysin (T7L) is a single-domain amidase that facilitates the lysis of Gram-negative bacteria. T7L exhibits a pH-dependent structural transition from native state to partially folded (PF) conformation. In the pH range 5–3, T7L PF states display differential ANS binding characteristics.

Methods

CD, fluorescence, NMR spectroscopy and lysis assays were used to investigate the structure-stability- dynamics relationships of T7L PF conformations.

Results

Structural studies indicated a partial loss of secondary/tertiary structures compared to its native state. The loss in the tertiary structure and the hydrophobic core opening increases upon decrease of pH from 5 to 3. Thermal denaturation experiments delineated that the pH?5 conformation is thermally irreversible in contrast to pH?3, depicting that hydrophobic core opening is essential for thermal reversibility. Further, urea dependent unfolding features of PF state at pH?5 and 4 evidenced for a collapsed conformation at intermediate urea concentrations. Residue level studies revealed that α1-helix and β3-β4 segment of T7L are the major contributors for such a structural collapse and inherent dynamics.

Conclusions

The results suggested that the low pH PF states of T7L are heterogeneous and exhibits differential structural, unfolding, thermal reversibility, and dynamic features.

General significance

Unraveling the structure-stability characteristics of different endolysin conformations is essential for designing novel chimeric and engineered phage endolysins as broadband antimicrobial agents over a varied pH range.  相似文献   
108.
109.
This paper investigates the effect of temperature on the elastic modulus of carbon nanotube-polyethylene (CNT-PE) nanocomposite and its interface using molecular dynamics (MD) simulations, by utilizing the second-generation polymer consistent force field (PCFF). Two CNTs—armchair and zigzag—were selected as reinforcing nano-fillers, and amorphous PE was used as the polymer matrix. For atomistic modelling of the nanocomposite, the commercially available code Materials Studio 8.0 was used and all other MD simulations were subsequently performed using the open source code Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To obtain the elastic modulus of the nanocomposite, stress-strain curves were drawn at different temperatures by performing uniaxial deformation tests on the nanocomposite material, whereas the curvatures of the interfacial interaction energy vs. strain curves were utilized to obtain Young’s modulus of the interface. In addition, the glass transition temperatures of the polymer matrix and nanocomposites were also evaluated using density-temperature curves. Based on the results, it is concluded that, irrespective of temperature condition, a nanocomposite reinforced with CNT of larger chirality (i.e., armchair) yields a higher value of Young’s modulus of the nanocomposite and its interface. It was also found that, at the phase transition (from a glassy to a rubbery state) temperature (i.e., glass transition temperature), Young’s moduli of the polymer matrix, nanocomposite, and its interface drop suddenly. The results obtained from MD simulations were verified with results obtained from continuum-based rule-of-mixtures.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号