全文获取类型
收费全文 | 899篇 |
免费 | 91篇 |
专业分类
990篇 |
出版年
2023年 | 8篇 |
2022年 | 22篇 |
2021年 | 42篇 |
2020年 | 6篇 |
2019年 | 16篇 |
2018年 | 33篇 |
2017年 | 12篇 |
2016年 | 35篇 |
2015年 | 43篇 |
2014年 | 63篇 |
2013年 | 55篇 |
2012年 | 89篇 |
2011年 | 63篇 |
2010年 | 42篇 |
2009年 | 38篇 |
2008年 | 57篇 |
2007年 | 42篇 |
2006年 | 41篇 |
2005年 | 46篇 |
2004年 | 44篇 |
2003年 | 42篇 |
2002年 | 21篇 |
2001年 | 4篇 |
2000年 | 11篇 |
1999年 | 9篇 |
1998年 | 15篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 5篇 |
1982年 | 6篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1973年 | 2篇 |
1969年 | 3篇 |
1968年 | 3篇 |
排序方式: 共有990条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
Summary We have improved zygote recovery 11–1,000 fold by optimizing the physiology of gamete release and mating inAcetabularia acetabulum. Gamete release was affected by agar purity, concentration, and volume/gametangial pair. Cold pre-treatment of gametangia (14–30 d at 10°C in the dark) synchronized subsequent gamete release at 21°C in the light. Cold pre-treatment was nearly twice as effective in synchronizing subsequent gamete release when intact, gametangia-bearing caps rather than isolated gametangia were pretreated. Synchronizing gamete release doubled mating efficiency. In a wild-type laboratory strain ofA. acetabulum, there were 1,561±207 gametes/gametangium which had half-lives of 14.5 d in 0.1% seawater-agar. We recovered 48–93% of the expected numbers of zygotes from a mass mating of 8 to 1,226 gametangia and 11–128% of the expected numbers of zygotes from mating single gametangial pairs: the large range in the calculated mating efficiency may be attributable to the variation in the numbers of gametes made per gametangium. Zygote recovery from single gametangial pairs was highly dependent on the volume of mating matrix. In addition, most zygotes recovered were unattached to any other zygotes in the subsequent generation (> 95% single cells from matings of 1–500 gametangial pairs). Our improvements in mating conditions and zygote recovery (1) have facilitated cell manipulation and culture ofA. acetabulum in the laboratory; and (2) have made controlled crosses for selection and genetic analysis of mutants feasible. These advances have removed a major barrier to genetic analysis of development inAcetabularia.Abbreviations LB
Luria-Bertani bacteriological broth
- SE
standard error of the mean
- Tg
agar gelling temperatures
- DAPI
4,6-diamidino-2-phenylindole 相似文献
36.
37.
Lechiancole T Blaiotta G Messina D Fusco V Villani F Salzano G 《Systematic and applied microbiology》2006,29(5):375-381
In winemaking Oenococcus (O.) oeni is the most frequent species of lactic acid bacteria (LAB) associated with malolactic fermentation (MLF). Several studies have demonstrated that O. oeni is a quite homogeneous species and strains are difficult to differentiate especially when isolates from the same region are analyzed. In this study, the molecular biodiversity of O. oeni isolated from wines of the same region (Aglianico produced in Basilicata Region, Southern Italy) was evaluated with the aim of designing a molecular approach for discrimination and characterization of the isolates at the strain level. Three molecular techniques were applied: random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), restriction endonucleases analysis-pulsed field gel electrophoresis (REA-PFGE) and differential display PCR (DD-PCR). The results obtained by RAPD-PCR confirmed the difficulty in differentiating isolates. By means of REA-PFGE a higher polymorphism, often related to the origin (winery) of strains, was revealed. However, on analyzing strains isolated from the same winery, only in some cases was more than one REA-PFGE pattern obtained. By analyzing dendrograms constructed on the basis of DD-PCR profiles differentiation of strains isolated from the same winery, in some cases, could be accomplished. The reliability of the DD-PCR in the differentiation of closely related strains suggests that this method could represent an alternative and/or additional tool to other molecular methods, such as REA-PFGE, for fine characterization of oenococcal strains. 相似文献
38.
Speidel D Varoqueaux F Enk C Nojiri M Grishanin RN Martin TF Hofmann K Brose N Reim K 《The Journal of biological chemistry》2003,278(52):52802-52809
Ca2+-dependent activator protein for secretion (CAPS) 1 is an essential cytosolic component of the protein machinery involved in large dense-core vesicle (LDCV) exocytosis and in the secretion of a subset of neurotransmitters. In the present study, we report the identification, cloning, and comparative characterization of a second mammalian CAPS isoform, CAPS2. The structure of CAPS2 and its function in LDCV exocytosis from PC12 cells are very similar to those of CAPS1. Both isoforms are strongly expressed in neuroendocrine cells and in the brain. In subcellular fractions of the brain, both CAPS isoforms are enriched in synaptic cytosol fractions and also present on vesicular fractions. In contrast to CAPS1, which is expressed almost exclusively in brain and neuroendocrine tissues, CAPS2 is also expressed in lung, liver, and testis. Within the brain, CAPS2 expression seems to be restricted to certain brain regions and cell populations, whereas CAPS1 expression is strong in all neurons. During development, CAPS2 expression is constant between embryonic day 10 and postnatal day 60, whereas CAPS1 expression is very low before birth and increases after postnatal day 0 to reach a plateau at postnatal day 21. Light microscopic data indicate that both CAPS isoforms are specifically enriched in synaptic terminals. Ultrastructural analyses show that CAPS1 is specifically localized to glutamatergic nerve terminals. We conclude that at the functional level, CAPS2 is largely redundant with CAPS1. Differences in the spatial and temporal expression patterns of the two CAPS isoforms most likely reflect as yet unidentified subtle functional differences required in particular cell types or during a particular developmental period. The abundance of CAPS proteins in synaptic terminals indicates that they may also be important for neuronal functions that are not exclusively related to LDCV exocytosis. 相似文献
39.
Aggregation of Human S100A8 and S100A9 Amyloidogenic Proteins Perturbs Proteostasis in a Yeast Model
Amyloid aggregates of the calcium-binding EF-hand proteins, S100A8 and S100A9, have been found in the corpora amylacea of patients with prostate cancer and may play a role in carcinogenesis. Here we present a novel model system using the yeast Saccharomyces cerevisiae to study human S100A8 and S100A9 aggregation and toxicity. We found that S100A8, S100A9 and S100A8/9 cotransfomants form SDS-resistant non-toxic aggregates in yeast cells. Using fluorescently tagged proteins, we showed that S100A8 and S100A9 accumulate in foci. After prolonged induction, S100A8 foci localized to the cell vacuole, whereas the S100A9 foci remained in the cytoplasm when present alone, but entered the vacuole in cotransformants. Biochemical analysis of the proteins indicated that S100A8 and S100A9 alone or coexpressed together form amyloid-like aggregates in yeast. Expression of S100A8 and S100A9 in wild type yeast did not affect cell viability, but these proteins were toxic when expressed on a background of unrelated metastable temperature-sensitive mutant proteins, Cdc53-1p, Cdc34-2p, Srp1-31p and Sec27-1p. This finding suggests that the expression and aggregation of S100A8 and S100A9 may limit the capacity of the cellular proteostasis machinery. To test this hypothesis, we screened a set of chaperone deletion mutants and found that reducing the levels of the heat-shock proteins Hsp104p and Hsp70p was sufficient to induce S100A8 and S100A9 toxicity. This result indicates that the chaperone activity of the Hsp104/Hsp70 bi-chaperone system in wild type cells is sufficient to reduce S100A8 and S100A9 amyloid toxicity and preserve cellular proteostasis. Expression of human S100A8 and S100A9 in yeast thus provides a novel model system for the study of the interaction of amyloid deposits with the proteostasis machinery. 相似文献
40.
Clarivel Lasalde Andrea V. Rivera Alfredo J. León José A. González-Feliciano Luis A. Estrella Eva N. Rodríguez-Cruz María E. Correa Iván J. Cajigas Dina P. Bracho Irving E. Vega Miles F. Wilkinson Carlos I. González 《Nucleic acids research》2014,42(3):1916-1929
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity. 相似文献