首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   15篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   4篇
  2013年   5篇
  2012年   12篇
  2011年   8篇
  2010年   7篇
  2009年   4篇
  2008年   10篇
  2007年   15篇
  2006年   8篇
  2005年   10篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1933年   1篇
  1932年   1篇
  1930年   1篇
  1927年   1篇
  1926年   1篇
  1925年   1篇
  1924年   2篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
81.

Background  

Perturbations in cell-cell interactions are a key feature of cancer. However, little is known about the systematic effects of cell-cell interaction on global gene expression in cancer.  相似文献   
82.
83.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   
84.
Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.  相似文献   
85.
Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic) strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE), a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and powerful tool for modeling the genetic architecture of MS. Moreover, our data represent the first step towards mechanistic dissection of genetic control of sexual dimorphism in CNS autoimmunity.  相似文献   
86.
Archaea domain is comprised of many versatile taxa that often colonize extreme habitats. Here, we report the discovery of strictly anaerobic extremely halophilic euryarchaeon, capable of obtaining energy by dissimilatory reduction of elemental sulfur using acetate as the only electron donor and forming sulfide and CO2 as the only products. This type of respiration has never been observed in hypersaline anoxic habitats and is the first example of such metabolic capability in the entire Archaea domain. We isolated and cultivated these unusual organisms, selecting one representative strain, HSR2, for detailed characterization. Our studies including physiological tests, genome sequencing, gene expression, metabolomics and [14C]-bicarbonate assimilation assays revealed that HSR2 oxidized acetate completely via the tricarboxylic acid cycle. Anabolic assimilation of acetate occurred via activated glyoxylate bypass and anaplerotic carboxylation. HSR2 possessed sulfurtransferase and an array of membrane-bound polysulfide reductase genes, all of which were expressed during the growth. Our findings suggest the biogeochemical contribution of haloarchaea in hypersaline anoxic environments must be reconsidered.  相似文献   
87.
Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were ?0.9‰ to ?1‰ for sulfide (34?), +3.6‰ to +4.7‰ for sulfate (34?), and +3.5‰ to +7.7‰ for oxygen in sulfate (18?). These values are significantly smaller compared to previously published values of sulfur disproportionators at neutral pH. We propose that this discrepancy is caused by masking effects due to preferential formation of polysulfides at high pH leading to accelerated internal sulfur turnover rates, but cannot rule out distinct isotope effects due to specific enzymatic disproportionation reactions under haloalkaline conditions. The results imply that the microbial sulfur cycle in haloalkaline environments is characterized by specific stable sulfur and oxygen isotope patterns.  相似文献   
88.
Four new isolates were obtained from denitrifying enrichments with various electron donors using sediment samples from hypersaline soda lakes. Based on 16S rRNA gene analysis and DNA-DNA hybridization results, they were all identified as members of the Gammaproteobacteria closely associated with the AlkalispirillumAlkalilimnicola group. Two isolates were obtained from samples enriched with nitrate as electron acceptor and H2 or polysulfide as electron donors, and another two strains were obtained with N2O as the electron acceptor and sulfide or acetate as electron donors. All four new isolates, together with the type strains of the genera Alkalispirillum and Alkalilimnicola originally described as obligate aerobes, were capable of anaerobic growth with acetate using either nitrate or N2O as electron acceptors. Their denitrification pathway, however, was disrupted at the level of nitrite. RuBisCO form I gene was detected and sequenced in the new isolates and in Alkalilimnicola halodurans but not in Alkalispirillum mobile. These data, together with the evidence of Oremland et al. (Appl Environ Microbiol 68:4795–4802, 2002) on the potential of Alkalilimnicola sp. MLHE-1 for autotrophic growth with arsenite as electron donor and nitrate as electron acceptor, demonstrate much higher metabolic diversity of this specific group of haloalkaliphilic Gammaproteobacteria than was originally anticipated.  相似文献   
89.
Enrichment with isobutyronitrile as the sole carbon, energy and nitrogen source at pH 10, using soda solonchak soils as an inoculum, resulted in the selection of a binary culture consisting of two different spore-forming phenotypes. One of them, strain ANL-iso4, was capable of growth with isobutyronitrile as a single substrate, while the other phenotype only utilized products of isobutyronitrile hydrolysis, such as isobutyroamide and isobutyrate. Strain ANL-iso4 is an obligate alkaliphile and a moderately salt-tolerant bacterium. Apart from isobutyronitrile, it grew on other (C3-C6) aliphatic nitriles at pH 10. Resting cells of ANL-iso4 actively hydrolyzed a number of aliphatic and arylaliphatic nitriles and their corresponding amides. The latter, together with the intermediate formation of amides during nitrile hydrolysis, indicated the presence of a nitrile hydratase/amidase system in the novel bacterium. Although present in an alkaliphilic bacterium, both nitrile- and amide-hydrolyzing activities had a pH optimum within the neutral range, probably due to their intracellular localization. On the basis of phenotypic and phylogenetic analyses, strain ANL-iso4 is proposed as a new species Bacillus alkalinitrilicus sp. nov.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号