首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   15篇
  158篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   4篇
  2013年   5篇
  2012年   12篇
  2011年   8篇
  2010年   7篇
  2009年   4篇
  2008年   10篇
  2007年   15篇
  2006年   8篇
  2005年   10篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1933年   1篇
  1932年   1篇
  1930年   1篇
  1927年   1篇
  1926年   1篇
  1925年   1篇
  1924年   2篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
51.
Suicide is thought to result from the harmful interaction of multiple factors that have social, environmental, neurobiological, and genetic backgrounds. Recent studies have suggested that genetic predisposition to suicidal behavior may be independent of the risk of suicide associated to mental disorders, such as affective disorders, schizophrenia, or alcohol dependence. Given the suicidal behavior heterogeneity and its hereditary complexity, the need to find demonstrable intermediate phenotypes that may make it possible to establish links between genes and suicide behaviors (endophenotypes) seems to be necessary. The main objective of this review was to consider the candidate endophenotypes of suicidal behaviors. Due to the recent advances in neuroimaging, we also characterize brain regions implicated in vulnerability to suicide behavior that are influenced by gene polymorphisms associated with suicidal behavior.  相似文献   
52.
"Thioalkalivibrio sulfidophilus" HL-EbGr7 is an obligately chemolithoautotrophic, haloalkaliphilic sulfur-oxidizing bacterium (SOB) belonging to the Gammaproteobacteria. The strain was found to predominate a full-scale bioreactor, removing sulfide from biogas. Here we report the complete genome sequence of strain HL-EbGr7 and its annotation. The genome was sequenced within the Joint Genome Institute Community Sequencing Program, because of its relevance to the sustainable removal of sulfide from bio- and industrial waste gases.  相似文献   
53.
The trypsin-like serine protease marapsin is a member of the large protease gene cluster at human chromosome 16p13.3, which also contains the structurally related proteases testisin, tryptase epsilon, tryptase gamma, and EOS. To gain insight into the biological functions of marapsin, we undertook a detailed gene expression analysis. It showed that marapsin expression was restricted to tissues containing stratified squamous epithelia and was absent or only weakly expressed in all other tissues, including the pancreas. Marapsin was constitutively expressed in nonkeratinizing stratified squamous epithelia of human esophagus, tonsil, cervix, larynx, and cornea. In the keratinizing stratified squamous epidermis of skin, however, its expression was induced only during epidermal hyperproliferation, such as in psoriasis and in murine wound healing. In fact, marapsin was the second most strongly up-regulated protease in psoriatic lesions, where expression was localized to the upper region of the hyperplastic epidermis. Similarly, in the hyperproliferative epithelium of regenerating murine skin wounds, marapsin localized to the suprabasal layers, where keratinocytes undergo squamous differentiation. The transient up-regulation of marapsin, which closely correlated with re-epithelialization, was virtually absent in a genetic mouse model of delayed wound closure. These results suggested a function during the process of re-epithelialization. Furthermore, in reconstituted human epidermis, a model system of epidermal differentiation, members of the IL-20 subfamily of cytokines, such as IL-22, induced marapsin expression. Consistent with a physiologic role in marapsin regulation, IL-22 was also strongly expressed in re-epithelializing skin wounds. Marapsin's restricted expression, localization, and cytokine-inducible expression suggest a role in the terminal differentiation of keratinocytes in hyperproliferating squamous epithelia.  相似文献   
54.
In vitro propagation studies have established that human immunodeficiency virus type 1 (HIV-1) is most efficiently transmitted at the virological synapse that forms between producer and target cells. Despite the presence of the viral envelope glycoprotein (Env) and CD4 and chemokine receptors at the respective surfaces, producer and target cells usually do not fuse with each other but disengage after the viral particles have been delivered, consistent with the idea that syncytia, at least in vitro, are not required for HIV-1 spread. Here, we tested whether tetraspanins, which are well known regulators of cellular membrane fusion processes that are enriched at HIV-1 exit sites, regulate syncytium formation. We found that overexpression of tetraspanins in producer cells leads to reduced syncytium formation, while downregulation has the opposite effect. Further, we document that repression of Env-induced cell-cell fusion by tetraspanins depends on the presence of viral Gag, and we demonstrate that fusion repression requires the recruitment of Env by Gag to tetraspanin-enriched microdomains (TEMs). However, sensitivity to fusion repression by tetraspanins varied for different viral strains, despite comparable recruitment of their Envs to TEMs. Overall, these data establish tetraspanins as negative regulators of HIV-1-induced cell-cell fusion, and they start delineating the requirements for this regulation.The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is incorporated into released virus particles and enables the virus to attach to and fuse with target cells in order to initiate the infectious cycle. Before Env mediates the fusion of viral and cellular membranes, i.e., while it is still incorporated in the plasma membrane of the infected cell, it drives the adhesion between virus producer cell and target cells, which gives rise to the formation of the so-called virological synapse (VS) (21, 24, 35, 36). The VS shares certain characteristics with the immunological synapse, including an accumulation of specific cellular membrane proteins and lipids (see, e.g., reference 5), and it provides efficient and secure transfer of virus particles from infected to uninfected cells (8). Importantly, the two adhering cells, like the pre- and postsynaptic cells that form an immunological synapse, typically do not fuse during such cell-to-cell transfer events. At first glance this seems surprising, as HIV-1 Env, unlike many other viral envelope proteins, can induce membrane fusion at physiological pH. Also, adhesion of producer and target cell, which can be initiated when the uropod of the infected cell contacts the uninfected cell (8), followed by reorganization of the cytoskeleton (25) and formation of full-fledged synapses, can extend over minutes (see, e.g., reference 20). This process should allow enough time to trigger cell-cell fusion. However, it is now well established that newly synthesized Env is efficiently internalized upon its arrival at the host cell plasma membrane, unless it is recruited into budding structures by viral Gag (see, e.g., reference 11; also discussed in references 3 and 6). Further, and likely also contributing to the prevention of producer-target cell fusion, immature Gag at the host cell plasma membrane represses Env-driven fusion, and this repression is lost only once Gag is processed in released virions (9, 22, 23, 31, 50). Finally, because syncytia are clearly not required for the transmission of virus from cell to cell in vitro and are possibly detrimental to virus spread in vivo, we hypothesize that HIV-1 cooperates with cellular membrane proteins to prevent cell-cell fusion.Members of a group of cellular proteins known as tetraspanins play an important role as regulators of cellular fusion processes, including myotube formation and fertilization (28, 30, 44; reviewed in, e.g., reference 17). As membrane organizers, these proteins homo- and heteromultimerize and associate with other cellular proteins to form variably sized but discrete microdomains, the so-called tetraspanin-enriched microdomains (TEMs) (29) (also called TERMs [1] or TEAs [12]). Knowledge of the molecular mechanisms through which tetraspanins regulate the fusion of cellular membranes is still lacking, though the available evidence strongly suggests (i) that these proteins are not themselves fusogens but rather that they coordinate the fusion activity of other cellular proteins and (ii) that they can act both as positive and negative regulators of cellular fusion processes. For instance, several in vivo studies unequivocally showed that CD9 expression in oocytes is essential for sperm-egg fusion (27, 28, 30), but CD9 and CD81 ablation in monocytes enhances the formation of multinucleated phagocytes that are involved in immune defense against certain microbes (45). Interestingly, the same two tetraspanins are also known to regulate virus-induced fusion processes. CD9 is involved in regulating cell-cell fusion driven by canine distemper virus, as the anti-CD9 antibody K41 inhibits syncytium formation by this virus (42), and CD81 is a necessary cofactor for infection of cells by hepatitis C virus (see, e.g., references 2 and 52). Finally, tetraspanins on uninfected (target) cells inhibit HIV-1-induced cell-cell fusion (14). This fusion regulation is likely due to interactions of CD9 and CD81 with CD4 and coreceptors at the surface of target cells, though the tetraspanin CD63 has also been implicated in the trafficking of CXCR4 to the plasma membrane (51).Because tetraspanins in HIV-1-producing cells are enriched at budding sites (4, 10, 13, 15, 33, 46, 49) and at the VS (26), we hypothesized that they regulate Env-driven fusion at the VS. Here, we document that tetraspanins in HIV-1-producing cells can indeed restrict syncytium formation. We also define some of the requirements for this fusion inhibition, thus laying the necessary groundwork for future mechanistic analyses. In addition, the characterization of cell-cell fusion regulation parameters in this study will allow the fusion-inhibitory activities to be distinguished from other regulatory functions exerted by tetraspanins, such as the modulation of virion infectivity and the regulation of cell-to-cell transmission of HIV-1.  相似文献   
55.
Actin-bundling protein L-plastin regulates T cell activation   总被引:1,自引:0,他引:1  
Engagement of TCRs induces actin rearrangements, which are critical for T cell activation. T cell responses require new actin polymerization, but the significance of higher-order actin structures, such as microfilament bundles, is unknown. To determine the role of the actin-bundling protein leukocyte-plastin (L-plastin; LPL) in this process, T cells from LPL(-/-) mice were studied. LPL(-/-) T cells were markedly defective in TCR-mediated cytokine production and proliferation. LPL(-/-) T cells also spread inefficiently on surfaces with immobilized TCR ligands and formed smaller immunological synapses with APCs, likely due to defective formation of lamellipodia. LPL(-/-) mice showed delayed rejection of skin allografts after release from immunosuppression. Moreover, LPL(-/-) mice developed much less severe neurologic symptoms in experimental autoimmune encephalomyelitis, which correlated with impaired T cell responses to Ag, manifested by reduced proliferation and production of IFN-γ and IL-17. Thus, LPL-dependent actin bundling facilitates the formation of lamellipodia and normal immunological synapses and thereby enables T cell activation.  相似文献   
56.
During a cruise with R/V Oceanus out of Woods Hole organized by the National Science Foundation project WormNet, a new species of chaetodermomorph aplacophoran was found in the northwestern Atlantic on the continental rise, between 1100 and nearly 2900 m. An investigation into the material of older collections revealed that the species had previously been collected on numerous occasions but remained undescribed. We here describe the species under the name Falcidens halanychi sp. nov. The species is compared with F. limifossorides Salvini-Plawen 1992 that has the most similar overall morphology, but occurs in the eastern Pacific at lower slope and abyssal depths between 3700 and 4300 m. We illustrate the radula of limifossorides and the birefringent colours of the sclerites photographically for the first time. We also include two DNA barcodes of F. halanychi (cytochome oxidase I) to aid future molecular identification.  相似文献   
57.
58.
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.  相似文献   
59.
Thioalkalivibrio denitrificans is the first example of an alkaliphilic, obligately autotrophic, sulfur-oxidizing bacterium able to grow anaerobically by denitrification. It was isolated from a Kenyan soda lake with thiosulfate as electron donor and N2O as electron acceptor at pH 10. The bacterium can use nitrite and N2O, but not nitrate, as electron acceptors during anaerobic growth on reduced sulfur compounds. Nitrate is only utilized as nitrogen source. In batch culture at pH 10, rapid growth was observed on N2O as electron acceptor and thiosulfate as electron donor. Growth on nitrite was only possible after prolonged adaptation of the culture to increasing nitrite concentrations. In aerobic thiosulfate-limited chemostats, Thioalkalivibrio denitrificans strain ALJD was able to grow between pH values of 7.5 and 10.5 with an optimum at pH 9.0. Growth of the organism in continuous culture on N2O was more stable and faster than in aerobic cultures. The pH limit for growth on N2O was 10.6. In nitrite-limited chemostat culture, growth was possible on thiosulfate at pH 10. Despite the observed inhibition of N2O reduction by sulfide, the bacterium was able to grow in sulfide-limited continuous culture with N2O as electron acceptor at pH 10. The highest anaerobic growth rate with N2O in continuous culture at pH 10 was observed with polysulfide (S8(2-)) as electron donor. Polysulfide was also the best substrate for oxygen-respiring cells. Washed cells at pH 10 oxidized polysulfide to sulfate via elemental sulfur in the presence of N2O or O2. In the absence of the electron acceptors, elemental sulfur was slowly reduced which resulted in regeneration of polysulfide. Cells of strain ALJD grown under anoxic conditions contained a soluble cd1-like cytochrome and a cytochrome-aa3-like component in the membranes.  相似文献   
60.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号