首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   14篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   8篇
  2010年   7篇
  2009年   4篇
  2008年   10篇
  2007年   15篇
  2006年   8篇
  2005年   11篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1933年   1篇
  1932年   1篇
  1930年   1篇
  1927年   1篇
  1926年   1篇
  1925年   1篇
  1924年   2篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
11.
Astrocytes are a dominant cell type that envelopes the glioma bed. Typically, that is followed by formation of contacts between astrocytes and glioma cells and accompanied by change in astrocyte phenotype, a phenomenon known as a ‘reactive astrogliosis.’ Generally considered glioma-promoting, astrocytes have many controversial peculiarities in communication with tumor cells, which need thorough examination in vitro. This review is devoted to in vitro co-culture studies of glioma cells and astrocytes. Firstly, we list several fundamental works which allow understanding the modalities of co-culturing. Cell-to-cell interactions between astrocytes and glioma cells, the roles of astrocytes in tumor metabolism, and glioma-related angiogenesis are reviewed. In the review, we also discuss communications between glioma stem cells and astrocytes. Co-cultures of glioma cells and astrocytes are used for studying anti-glioma treatment approaches. We also enumerate surgical, chemotherapeutic, and radiotherapeutic methods assessed in co-culture experiments. In conclusion, we underline collisions in the field and point out the role of the co-cultures for neurobiological studies.  相似文献   
12.
An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class ‘Natranaerobiia’. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood–Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+-Rnf complex, Na+-F1F0 ATPase and Na+-translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.  相似文献   
13.
Here we describe the diversity and activity of sulfate reducing bacteria along a salinity gradient in four different soda lakes from the Kulunda Steppe (South East Siberia, Russia). For this purpose, a combination of culture-dependent and independent techniques was applied. The general bacterial and SRB diversity were analyzed by denaturing gradient gel electrophoresis (DGGE) targeting the 16S rDNA gene. DNA was used to detect the microbial populations that were present in the soda lake sediments, whereas ribosomal RNA was used as a template to obtain information on those that were active. Individual DGGE bands were sequenced and a phylogenetic analysis was performed. In addition, the overall activity of SRB was obtained by measuring the sulfate reduction rates (SRR) and their abundance was estimated by serial dilution. Our results showed the presence of minor, but highly active microbial populations, mostly represented by members of the Proteobacteria. Remarkably high SRR were measured at hypersaline conditions (200 g L−1). A relatively high viable count indicated that sulfate reducing bacteria could be highly active in hypersaline soda lakes. Furthermore, the increase of sodium carbonate/bicarbonate seemed to affect the composition of the microbial community in soda lakes, but not the rate of sulfate reduction.  相似文献   
14.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T).  相似文献   
15.
16.
Microbial diversity and biogeochemical cycling in soda lakes   总被引:2,自引:0,他引:2  
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.  相似文献   
17.
Here we describe the generation of a double-fluorescent Cre/loxP indicator system. This protocol involves (i) all cloning steps to generate the plasmid vector (3-5 months); (ii) a guide to prepare high-efficiency transformation competent E. coli; (iii) generation of double-fluorescent reporter cell lines (3-4 weeks); and (iv) the functional testing of the indicator cell lines by application of cell-permeable Cre recombinase. The indicator is designed to monitor recombination events by switching the fluorescence light from red to green. The red fluorescence, indicating the nonrecombined state, is accompanied by the expression of a resistance gene against the antibiotic blasticidin. Appearance of green fluorescence concomitantly with the activation of puromycin-acetyltransferase monitors the recombination of the indicator construct by the Cre recombinase. In summary, we have developed a plasmid vector allowing a fast, stable and straightforward generation of transgenic clones. The expression of red fluorescent protein enables the selection of positive clones upon transfection and significantly shortens the time for identification of stable clones. This feature and the option to select for recombined cells by puromycin application are advantages compared with other alternative methods. Moreover, we developed a method utilizing cell-permeable Cre protein to validate the transgenic clones. Ultimately, this powerful methodology facilitates Cre/loxP-based applications such as cell lineage tracking or monitoring of cell fusion.  相似文献   
18.
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro‐inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR‐dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.  相似文献   
19.

Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  相似文献   
20.
Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8 M total Na+ (optimum at 4 M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5–9). The core archaeal lipids of strain AArcel5T were dominated by C20–C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20–C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T = UNIQEM U972T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号