首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   48篇
  765篇
  2023年   2篇
  2022年   13篇
  2021年   16篇
  2020年   4篇
  2019年   3篇
  2018年   13篇
  2017年   17篇
  2016年   21篇
  2015年   19篇
  2014年   34篇
  2013年   36篇
  2012年   55篇
  2011年   68篇
  2010年   45篇
  2009年   32篇
  2008年   66篇
  2007年   49篇
  2006年   42篇
  2005年   37篇
  2004年   38篇
  2003年   37篇
  2002年   35篇
  2001年   10篇
  2000年   12篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有765条查询结果,搜索用时 0 毫秒
761.
Summary This study of angiotensin II (ANG II) membrane interactions uses a combination of31P NMR spectroscopy and differential scanning calorimetry (DSC), two valuable and complementary techniques which can provide useful information about the thermotropic and dynamic properties of peptide hormones in membranes. The major conclusion from the calorimetric experiments is that ANG II affects the phase properties of hydrated dipalmitoyl-phosphatidylcholine (DPPC) bilayers by mainly broadening the pretransition area. Preliminary31P NMR data seem to confirm the DSC results by showing that ANG II produces a lowering of the pretransition temperature but affects only minimally the main phase transition. In combination, the results from the two methods may indicate that the hormone produces its effects on the phospholipid head groups while its effects on the bilayer alkyl chains are not significant. Such results can be interpreted to mean that ANG II closely interacts with the phospholipid head groups perhaps up to the level of the interface, but does not enter deeper into the membrane bilayer.  相似文献   
762.
763.
764.
In the presence of rutin as sole carbon source, Penicillium decumbens produces two intracellular β-glucosidases named GI and GII, with molecular masses of 56,000 and 460,000 Da, respectively. The two proteins have been purified to homogeneity. GI and GII composed of two and four equal sub-units, respectively and displayed optimal activity at pH 7.0 and temperature 65–75 °C. Both β-glucosidases were competitively inhibited by glucose and glucono-δ-lactone. GI and GII exhibited broad substrate specificity, since they hydrolyzed a range of (1,3)-, (1,4)- and (1,6)-β-glucosides as well as aryl β-glucosides. Determination of kcat/Km revealed that GII hydrolyzed 3–8 times more efficiently the above-mentioned substrates. The ability of GI and GII to deglycosylate various flavonoid glycosides was also investigated. Both enzymes were active against flavonoids glycosylated at the 7 position but GII hydrolyzed them 5 times more efficiently than GI. Of the flavanols tested, both enzymes were incapable of hydrolyzing quercetrin and kaempferol-3-glucoside. The main difference between GI and GII as far as the hydrolysis of flavanols is concerned, was the ability of GII to hydrolyze the quercetin-3-glucoside.  相似文献   
765.
We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.

A chemical screen to evaluate how 4100 drugs modulate translation rates confirms mTOR as the main pathway regulating translation and reveals that sphingosine kinase inhibitors downregulate translation via activation of the ER-stress response. Sphingosine kinase inhibitors, including one in clinical trials, activate stress responses and kill cells independently of the cognate target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号