首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   48篇
  2023年   2篇
  2022年   8篇
  2021年   15篇
  2020年   4篇
  2019年   3篇
  2018年   12篇
  2017年   16篇
  2016年   21篇
  2015年   22篇
  2014年   34篇
  2013年   39篇
  2012年   54篇
  2011年   63篇
  2010年   43篇
  2009年   33篇
  2008年   62篇
  2007年   48篇
  2006年   39篇
  2005年   33篇
  2004年   38篇
  2003年   35篇
  2002年   34篇
  2001年   7篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有720条查询结果,搜索用时 15 毫秒
41.
Solid wastes from white vinification, including grape peels, seeds and stems, were used as raw material for the recovery of antioxidant polyphenols. Extractions were performed using non-toxic media composed of water/ethanol mixtures and hydrochloric, acetic or tartaric acid. Recovery efficiency was assessed by monitoring the antioxidant potency of extracts and several indices related to their polyphenolic composition, including total polyphenol, total flavonoid, total flavanol and condensed tannin (proanthocyanidin) content. Among the by-products tested, seeds were shown to contain exceptional amounts of total polyphenols (13.76 g per 100g dry weight), followed by stems (7.47 g per 100g dry weight) and peels (0.97 g per 100g dry weight). Extracts with the highest antioxidant activity from all by-products were obtained with 57% ethanol. Acidification of this medium with 0.1% HCl improved polyphenol recovery and antiradical activity for stem extracts, but it was unfavourable for seed extraction.  相似文献   
42.
43.
Although the extensive use of Aspergillus-active antifungals has been recently associated with an increase in zygomycosis in several cancer centers, the frequency of this opportunistic mycosis began to rise earlier, since the mid 1990s. The reasons for that emergence are unclear. Recent evidence suggests that endosymbiotic bacteria of Rhizopus species produce toxins that enhance fungal pathogenicity. We postulate that, although Zygomycetes appear equally ubiquitous and virulent to Aspergillus, zygomycosis was rare in the past in immunosuppressed patients specifically because of the widespread use of antibacterials in this patient population. Such use may have resulted in inhibition of endosymbiotic, toxin-producing bacteria and led indirectly in attenuation of Zygomycetes virulence. Thus, the growing rates of antimicrobial resistance over the past decade selected for multidrug-resistant endosymbiotic bacteria of Zygomycetes, which could facilitate the emergence of zygomycosis. This hypothesis, if true, will be the first paradigm of modulation of virulence of opportunistic fungi by antibacterials.  相似文献   
44.
Trithorax-group protein ASH1 methylates histone H3 lysine 36   总被引:6,自引:0,他引:6  
Tanaka Y  Katagiri Z  Kawahashi K  Kioussis D  Kitajima S 《Gene》2007,397(1-2):161-168
Drosophila discs absent, small, or homeotic-1 (ASH1) is a member of trithorax-group proteins that play essential roles in epigenetic regulation of Hox genes. Drosophila ASH1 genetically interacts with trithorax and has been reported to methylate histone H3 lysine 4 (K4) as well as H3 K9 and H4 K20. The function of mammalian ASH1, by contrast, has remained largely unknown. Here we report a histone lysine scanning mutation assay using recombinant core histones and in vitro reconstituted nucleosomes to identify targets of mammalian methyltransferases by fluorographic, Western blot, and mass spectrometric analyses. The assay reproduced specificities of previously known histone methyltransferases and further revealed unexpectedly that mammalian ASH1 mono- or di-methylates histone H3 K36 but not any other lysine residues of recombinant unmodified mammalian histones. Under the same experimental condition, lysine to arginine substitution of histone H3 at position 36 abolished the methyltransferase activity of Drosophila ASH1, suggesting that K36 is their specific target. We also demonstrate that native ASH1 proteins, consisting of the carboxy-terminal domains including the catalytic site, retain the specificity for K36. Taken together, our data suggest that ASH1 subfamily of SET domain proteins have K36-specific methyltransferase activities evolutionarily conserved from flies to mammals.  相似文献   
45.
The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.  相似文献   
46.
Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca2+ oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca2+ oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca2+ oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca2+ sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca2+ frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca2+ oscillation inducing activity.  相似文献   
47.
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.  相似文献   
48.
49.
This study investigates the production of alginate microcapsules, which have been coated with the polysaccharide chitosan, and evaluates some of their properties with the intention of improving the gastrointestinal viability of a probiotic ( Bifidobacterium breve ) by encapsulation in this system. The microcapsules were dried by a variety of methods, and the most suitable was chosen. The work described in this Article is the first report detailing the effects of drying on the properties of these microcapsules and the viability of the bacteria within relative to wet microcapsules. The pH range over which chitosan and alginate form polyelectrolyte complexes was explored by spectrophotometry, and this extended into swelling studies on the microcapsules over a range of pHs associated with the gastrointestinal tract. It was shown that chitosan stabilizes the alginate microcapsules at pHs above 3, extending the stability of the capsules under these conditions. The effect of chitosan exposure time on the coating thickness was investigated for the first time by confocal laser scanning microscopy, and its penetration into the alginate matrix was shown to be particularly slow. Coating with chitosan was found to increase the survival of B. breve in simulated gastric fluid as well as prolong its release upon exposure to intestinal pH.  相似文献   
50.
New and emerging therapeutic approaches focus on the targeted delivery of therapeutic agents to cell mitochondria with high specificity. Herein we present a novel mitotropic nanocarrier based on an oligolysine scaffold by addition of two triphenylphosphonium cations per oligomer. Although the parent oligolysine failed to enter healthy cells, the triphenylphosphonium modified carrier, with or without d-Luciferin, attached as cargo molecule, demonstrated striking mitochondrial specificity. Furthermore, the oligolysine bound d-Luciferin exhibited chemiluminescence, of lower intensity than free d-Luciferin, yet of remarkably longer steady-state temporal profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号