首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   51篇
  2023年   2篇
  2022年   12篇
  2021年   14篇
  2020年   4篇
  2019年   3篇
  2018年   12篇
  2017年   17篇
  2016年   20篇
  2015年   19篇
  2014年   35篇
  2013年   40篇
  2012年   53篇
  2011年   65篇
  2010年   43篇
  2009年   33篇
  2008年   66篇
  2007年   46篇
  2006年   45篇
  2005年   35篇
  2004年   39篇
  2003年   37篇
  2002年   35篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   9篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
排序方式: 共有771条查询结果,搜索用时 109 毫秒
41.
Regulators of G-protein signaling (RGS) 9-2 is a striatal enriched protein that controls G protein coupled receptor signaling duration by accelerating Galpha subunit guanosine triphosphate hydrolysis. We have previously demonstrated that mice lacking the RGS9 gene show enhanced morphine analgesia and delayed development of tolerance. Here we extend these studies to understand the mechanism via which RGS9-2 modulates opiate actions. Our data suggest that RGS9-2 prevents several events triggered by mu-opioid receptor (MOR) activation. In transiently transfected PC12 cells, RGS9-2 delays agonist induced internalization of epitope HA-tagged mu-opioid receptor. This action of RGS9-2 requires localization of the protein near the cell membrane. Co-immunoprecipitation studies reveal that RGS9-2 interacts with HA-tagged mu-opioid receptor, and that this interaction is enhanced by morphine treatment. In addition, morphine promotes the association of RGS9-2 with another essential component of MOR desensitization, beta-arrestin-2. We also show that over-expression of RGS9-2 prevents opiate-induced extracellular signal-regulated kinase phosphorylation. Our data indicate that RGS9-2 plays an essential role in opiate actions, by negatively modulating MOR downstream signaling as well as the rate of MOR endocytosis.  相似文献   
42.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   
43.
44.
Mating systems are a central component in the evolution of animal life histories and in conservation genetics. The patterns of male reproductive skew and of paternal shares in batches of offspring, for example, affect genetic effective population size. A prominent characteristic of mating systems of sea turtles seem to be a considerable intra- and interspecific variability in the degree of polyandry. Because of the difficulty of observing the mating behaviour of sea turtles directly in the open sea, genetic paternity analysis is particularly useful for gaining insights into this aspect of their reproductive behaviour. We investigated patterns of multiple paternity in clutches of loggerhead sea turtles in the largest Mediterranean rookery using four highly variable microsatellite loci. Furthermore, we tested for a relationship between the number of fathers detected in clutches and body size of females. More than one father was detected in the clutches of 14 out of 15 females, with two clutches revealing the contribution of at least five males. In more than half the cases, the contributions of different fathers to a clutch did not depart from equality. The number of detected fathers significantly increased with increasing female body size. This relationship indicates that males may prefer to mate with large, and therefore productive, females. Our results suggest that polyandry is likely to increase effective population size compared to a population in which females would mate with only one male; male reproductive contributions being equal.  相似文献   
45.
Solid wastes from white vinification, including grape peels, seeds and stems, were used as raw material for the recovery of antioxidant polyphenols. Extractions were performed using non-toxic media composed of water/ethanol mixtures and hydrochloric, acetic or tartaric acid. Recovery efficiency was assessed by monitoring the antioxidant potency of extracts and several indices related to their polyphenolic composition, including total polyphenol, total flavonoid, total flavanol and condensed tannin (proanthocyanidin) content. Among the by-products tested, seeds were shown to contain exceptional amounts of total polyphenols (13.76 g per 100g dry weight), followed by stems (7.47 g per 100g dry weight) and peels (0.97 g per 100g dry weight). Extracts with the highest antioxidant activity from all by-products were obtained with 57% ethanol. Acidification of this medium with 0.1% HCl improved polyphenol recovery and antiradical activity for stem extracts, but it was unfavourable for seed extraction.  相似文献   
46.
47.
Trithorax-group protein ASH1 methylates histone H3 lysine 36   总被引:6,自引:0,他引:6  
Tanaka Y  Katagiri Z  Kawahashi K  Kioussis D  Kitajima S 《Gene》2007,397(1-2):161-168
Drosophila discs absent, small, or homeotic-1 (ASH1) is a member of trithorax-group proteins that play essential roles in epigenetic regulation of Hox genes. Drosophila ASH1 genetically interacts with trithorax and has been reported to methylate histone H3 lysine 4 (K4) as well as H3 K9 and H4 K20. The function of mammalian ASH1, by contrast, has remained largely unknown. Here we report a histone lysine scanning mutation assay using recombinant core histones and in vitro reconstituted nucleosomes to identify targets of mammalian methyltransferases by fluorographic, Western blot, and mass spectrometric analyses. The assay reproduced specificities of previously known histone methyltransferases and further revealed unexpectedly that mammalian ASH1 mono- or di-methylates histone H3 K36 but not any other lysine residues of recombinant unmodified mammalian histones. Under the same experimental condition, lysine to arginine substitution of histone H3 at position 36 abolished the methyltransferase activity of Drosophila ASH1, suggesting that K36 is their specific target. We also demonstrate that native ASH1 proteins, consisting of the carboxy-terminal domains including the catalytic site, retain the specificity for K36. Taken together, our data suggest that ASH1 subfamily of SET domain proteins have K36-specific methyltransferase activities evolutionarily conserved from flies to mammals.  相似文献   
48.
The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.  相似文献   
49.
Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca2+ oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca2+ oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca2+ oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca2+ sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca2+ frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca2+ oscillation inducing activity.  相似文献   
50.
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号