首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   46篇
  国内免费   1篇
  2023年   8篇
  2022年   17篇
  2021年   32篇
  2020年   22篇
  2019年   23篇
  2018年   20篇
  2017年   20篇
  2016年   27篇
  2015年   68篇
  2014年   50篇
  2013年   78篇
  2012年   122篇
  2011年   104篇
  2010年   45篇
  2009年   59篇
  2008年   77篇
  2007年   72篇
  2006年   55篇
  2005年   55篇
  2004年   65篇
  2003年   47篇
  2002年   42篇
  2001年   6篇
  2000年   5篇
  1999年   13篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1188条查询结果,搜索用时 31 毫秒
151.
Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15?min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.  相似文献   
152.
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.  相似文献   
153.

Background

Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions.

Methodology/Principal Findings

Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates.

Conclusions/Significance

A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades.  相似文献   
154.
Mitotic kinesins represent potential drug targets for anticancer chemotherapy. Inhibitors of different chemical classes have been identified that target human Eg5, a kinesin responsible for the establishment of the bipolar spindle. One potent Eg5 inhibitor is S-trityl-L-cysteine (STLC), which arrests cells in mitosis and exhibits tumor growth inhibition activity. However, the underlying mechanism of STLC action on the molecular level is unknown. Here, cells treated with STLC were blocked in mitosis through activation of the spindle assembly checkpoint as shown by the phosphorylated state of BubR1 and the accumulation of mitosis specific phosphorylation on histone H3 and aurora A kinase. Using live cell imaging, we observed prolonged mitotic arrest and subsequent cell death after incubation of GFP-alpha-tubulin HeLa cells with STLC. Activated caspase-9 occurred before cleavage of caspase-8 leading to the accumulation of the activated executioner caspase-3 suggesting that STLC induces apoptosis through the intrinsic apoptotic pathway. Proteome analysis following STLC treatment revealed 33 differentially regulated proteins of various cellular processes, 31 of which can be linked to apoptotic cell death. Interestingly, four identified proteins, chromobox protein homolog, RNA-binding Src associated in mitosis 68 kDa protein, stathmin, and translationally controlled tumor protein can be linked to mitotic and apoptotic processes.  相似文献   
155.
The genome of Escherichia coli contains four genes assigned to the peptide transporter (PTR) family. Of these, only tppB (ydgR) has been characterized, and named tripeptide permease, whereas protein functions encoded by the yhiP, ybgH and yjdL genes have remained unknown. Here we describe the overexpression of yhiP as a His-tagged fusion protein in E. coli and show saturable transport of glycyl-sarcosine (Gly-Sar) with an apparent affinity constant of 6.5 mm. Overexpression of the gene also increased the susceptibility of cells to the toxic dipeptide alafosfalin. Transport was strongly decreased in the presence of a protonophore but unaffected by sodium depletion, suggesting H(+)-dependence. This was confirmed by purification of YhiP and TppB by nickel affinity chromatography and reconstitution into liposomes. Both transporters showed Gly-Sar influx in the presence of an artificial proton gradient and generated transport currents on a chip-based sensor. Competition experiments established that YhiP transported dipeptides and tripeptides. Western blot analysis revealed an apparent mass of YhiP of 40 kDa. Taken together, these findings show that yhiP encodes a protein that mediates proton-dependent electrogenic transport of dipeptides and tripeptides with similarities to mammalian PEPT1. On the basis of our results, we propose to rename YhiP as DtpB (dipeptide and tripeptide permease B), by analogy with the nomenclature in other bacteria. We also propose to rename TppB as DtpA, to better describe its function as the first protein of the PTR family characterized in E. coli.  相似文献   
156.
Formin For3p nucleates actin cables at the tips of fission yeast cells for polarized cell growth. The results of prior experiments have suggested a possible mechanism for actin cable assembly that involves association of For3p near cell tips, For3p-mediated actin polymerization, retrograde flow of actin cables toward the cell center, For3p dissociation from cell tips, and cable disassembly. We used analytical and computational modeling to test the validity and implications of the proposed coupled For3p/actin mechanism. We compared the model to prior experiments quantitatively and generated predictions for the expected behavior of the actin cable system upon changes of parameter values. We found that the model generates stable steady states with realistic values of rate constants and actin and For3p concentrations. Comparison of our results to previous experiments monitoring the FRAP of For3p-3GFP and the response of actin cables to treatments with actin depolymerizing drugs provided further support for the model. We identified the set of parameter values that produces results in agreement with experimental observations. We discuss future experiments that will help test the model''s predictions and eliminate other possible mechanisms. The results of the model suggest that flow of actin cables may establish actin and For3p concentration gradients in the cytoplasm that could be important in global cell patterning.  相似文献   
157.
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.  相似文献   
158.
In this study, we investigated the role of prostaglandin F2alpha (PGF2alpha) in mouse osteoblast survival and the function of fibroblast growth factor 2 (FGF-2) and fibroblast growth factor receptor 1 (FGFR1) in this process. In particular, for the first time, we demonstrated that PGF2alpha increased osteoblast survival in a dose-dependent manner and we showed that the effect is correlated with an increase in Bcl-2/Bax ratio. Furthermore, we demonstrated that PGF2alpha caused a decrement of the active caspases 9 and 3. By blocking FGF-2 with the specific neutralizing antibody and by depletion of FGFR1 gene with a specific siRNA, we showed that FGFR1 and FGF-2 are critical for the increment of Bcl-2/Bax ratio and the decrement of the active caspases 9 and 3, induced by PGF2alpha. Moreover, transmission electron microscopy studies showed that PGF2alpha increased binding of FGF-2 and FGFR1 and co-localization of reactive sites at plasma membrane level. In conclusion, we report a novel mechanism in which PGF2alpha induces FGF-2 binding to its specific cell surface receptor 1 leading to a cascade pathway that culminates with increased mouse osteoblast survival.  相似文献   
159.
Carotid geometry effects on blood flow and on risk for vascular disease   总被引:2,自引:0,他引:2  
It has been widely observed that atherosclerotic diseases occur at sites with complex hemodynamics, such as artery bifurcations, junctions, and regions of high curvature. These regions usually have very low or highly oscillatory wall shear stress (WSS). In the present work, 3D pulsatile blood flow through a model of the carotid artery bifurcation was simulated using a finite volume numerical method. The goal was to quantify the risk of atherogenesis associated with different carotid artery geometries. A risk scale based on the average WSS on the sinus wall of the internal carotid artery was proposed-a scale that can be used to quantify the effect of the carotid geometry on the relative risk for developing vascular disease. It was found that the bifurcation angle and the out-of-plane angle of the internal carotid artery affect the formation of low stress regions on the carotid walls. The main conclusions are: (a) larger internal carotid artery angles (theta(IC)) generally increase the frequency and the area of blood recirculation and lower the WSS on the sinus wall, hence increasing the risk of plaque build-up; (b) off-plane angles were found to lower the WSS on the sinus for geometries with theta(IC)25 degrees . Larger off-plane angles generally increase the danger of plague build-up; (c) for theta(IC) < 25 degrees , the off-plane angle does not have an obvious effect on the hemodynamic WSS; (d) symmetric bifurcations were found to increase the WSS on the sinus wall and ease the risk of vascular disease.  相似文献   
160.
We studied, under laboratory conditions, the performance of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), immature stages in intact whole fruit of three sweet orange varieties, lemon, and bitter oranges. Both citrus variety and fruit part (flavedo, albedo, and pulp) had strong effects on larval performance, smaller effects on pupae, and no effects on eggs. Fruit peel was the most critical parameter for larval development and survival, drastically affecting larval survival (inducing very high mortality rates). Among fruit regions, survival of larvae placed in flavedo was zero for all varieties tested except for bitter orange (22.5% survival), whereas survival in albedo was very low (9.8-17.4%) for all varieties except for bitter orange (76%). Survival of pupae obtained from larvae placed in the above-mentioned fruit regions was high for all varieties tested (81.1-90.7%). Fruit pulp of all citrus fruit tested was favorable for larval development. The highest survival was observed on bitter oranges, but the shortest developmental times and heaviest pupae were obtained from orange cultivars. Pulp chemical properties, such as soluble solid contents, acidity, and pH had rather small effects on larval and pupal survival and developmental time (except for juice pH on larvae developmental duration), but they had significant effects on pupal weight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号