首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1176篇
  免费   82篇
  2022年   10篇
  2021年   16篇
  2020年   9篇
  2019年   18篇
  2018年   15篇
  2017年   7篇
  2016年   20篇
  2015年   39篇
  2014年   38篇
  2013年   53篇
  2012年   79篇
  2011年   58篇
  2010年   61篇
  2009年   49篇
  2008年   62篇
  2007年   72篇
  2006年   58篇
  2005年   68篇
  2004年   58篇
  2003年   76篇
  2002年   55篇
  2001年   34篇
  2000年   35篇
  1999年   22篇
  1998年   28篇
  1997年   22篇
  1996年   33篇
  1995年   17篇
  1994年   9篇
  1993年   5篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   14篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1928年   2篇
  1927年   2篇
排序方式: 共有1258条查询结果,搜索用时 375 毫秒
51.
The human immune system consists of a highly intelligent network of billions of independent, self-organized cells that interact with each other. Machine learning (ML) is an artificial intelligence (AI) tool that automatically processes huge amounts of image data. Immunotherapies have revolutionized the treatment of blood cancer. Specifically, one such therapy involves engineering immune cells to express chimeric antigen receptors (CAR), which combine tumor antigen specificity with immune cell activation in a single receptor. To improve their efficacy and expand their applicability to solid tumors, scientists optimize different CARs with different modifications. However, predicting and ranking the efficacy of different "off-the-shelf" immune products (e.g., CAR or Bispecific T-cell Engager [BiTE]) and selection of clinical responders are challenging in clinical practice. Meanwhile, identifying the optimal CAR construct for a researcher to further develop a potential clinical application is limited by the current, time-consuming, costly, and labor-intensive conventional tools used to evaluate efficacy. Particularly, more than 30 years of immunological synapse (IS) research data demonstrate that T cell efficacy is not only controlled by the specificity and avidity of the tumor antigen and T cell interaction, but also it depends on a collective process, involving multiple adhesion and regulatory molecules, as well as tumor microenvironment, spatially and temporally organized at the IS formed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. The optimal function of cytotoxic lymphocytes (including CTL and NK) depends on IS quality. Recognizing the inadequacy of conventional tools and the importance of IS in immune cell functions, we investigate a new strategy for assessing CAR-T efficacy by quantifying CAR IS quality using the glass-support planar lipid bilayer system combined with ML-based data analysis. Previous studies in our group show that CAR-T IS quality correlates with antitumor activities in vitro and in vivo. However, current manually quantified IS quality data analysis is time-consuming and labor-intensive with low accuracy, reproducibility, and repeatability. In this study, we develop a novel ML-based method to quantify thousands of CAR cell IS images with enhanced accuracy and speed. Specifically, we used artificial neural networks (ANN) to incorporate object detection into segmentation. The proposed ANN model extracts the most useful information to differentiate different IS datasets. The network output is flexible and produces bounding boxes, instance segmentation, contour outlines (borders), intensities of the borders, and segmentations without borders. Based on requirements, one or a combination of this information is used in statistical analysis. The ML-based automated algorithm quantified CAR-T IS data correlates with the clinical responder and non-responder treated with Kappa-CAR-T cells directly from patients. The results suggest that CAR cell IS quality can be used as a potential composite biomarker and correlates with antitumor activities in patients, which is sufficiently discriminative to further test the CAR IS quality as a clinical biomarker to predict response to CAR immunotherapy in cancer. For translational research, the method developed here can also provide guidelines for designing and optimizing numerous CAR constructs for potential clinical development.Trial Registration: ClinicalTrials.gov NCT00881920.  相似文献   
52.
Acyl-CoA elongase expression during seed development in Brassica napus   总被引:3,自引:0,他引:3  
The Bn-FAE1.1 and Bn-FAE1.2 genes encode the 3-ketoacyl-CoA synthase, a component of the elongation complex responsible for the synthesis of very long chain monounsaturated fatty acids (VLCMFA) in the seeds of Brassica napus. Bn-FAE1 gene expression was studied during seed development using two different cultivars: Gaspard, a high erucic acid rapeseed (HEAR), and ISLR4, a low erucic acid rapeseed (LEAR). The mRNA developmental profiles were similar for the two cultivars, the maximal expression levels being measured at 8 weeks after pollination (WAP) in HEAR and at 9 WAP in LEAR. Differential expression of Bn-FAE1.1 and Bn-FAE1.2 genes was also studied. In each cultivar the same expression profile was observed for both genes, but Bn-FAE1.2 was expressed at a lower level than Bn-FAE1.1. Secondly, VLCMFA synthesis was measured using particulate fractions prepared from maturating seeds harvested weekly after pollination. The oleoyl-CoA and ATP-dependent elongase activities increased from the 4th WAP in HEAR and reached the maximal level at 8 WAP, whereas both activities were absent in LEAR. In contrast, the 3-hydroxy dehydratase, a subunit of the elongase complex, had a similar activity in both cultivars and reached a maximum from 7 to 9 WAP. Finally, antibodies against the 3-ketoacyl-CoA synthase revealed a protein of 57 kDa present only in HEAR. Our results show: (i) that both genes are transcribed in HEAR and LEAR cultivars; (ii) that they are coordinately regulated; (iii) that Bn-FAE1.1 is quantitatively the major isoform expressed in seeds; (iv) that the Bn-FAE1 gene encodes a protein of 57 kDa responsible for the 3-ketoacyl-CoA synthase activity.  相似文献   
53.
54.
In the T(1;2)dor var7 multibreak rearrangement the distal 1A-2B segment of the X chromosome of Drosophila melanogaster is juxtaposed to an inverted portion of the heterochromatin of chromosome 2. Analysis of mitotic chromosomes by a series of banding techniques has permitted us precisely to locate the heterochromatic breakpoint of this translocation in the h42 region of 2R. Cloning and sequencing of the eu-heterochromatic junction revealed that the translocated 1A-2B fragment is joined to (AACAC)n repeats, which represent a previously undescribed satellite DNA in D. melanogaster. These repeated sequences have been estimated to account for about 1 Mb of the D. melanogaster genome. The repeats are located mainly in the Y chromosome and in the heterochromatin of the right arm of chromosome 2 (2Rh), where they are colocalized with the Stalker retrotransposon. Received: 3 October 1998 / Accepted: 3 December 1998  相似文献   
55.
The bulk of the eukaryotic genome is composed of families of repetitive sequences that are genetically silent and exhibit various types of instability. Transposable elements (TEs) are particularly common in heterochromatic regions of the genome - a location where TEs might do less damage to their host. Recent advances suggest that the relationship between TEs and heterochromatin might not be quite so straightforward.  相似文献   
56.
57.
Wegener J  Abrams D  Willenbrink W  Galla HJ  Janshoff A 《BioTechniques》2004,37(4):590, 592-4, 596-7
Measurement of transendothelial or transepithelial electrical resistances (TERs) is a straightforward in situ experimental approach to monitor the expression or modulation of barrier-forming cell-to-cell contacts (tight junctions) in cultured cells grown on porous filters. Although widely accepted, there is currently no device available to automatically measure the time course of TERs under ordinary cell culture conditions (37 degrees C, 5% or 10% CO2). This paper describes a development from our laboratory that is capable of following in parallel the TERs of several filter-grown cell layers with time and in an entirely computer-controlled fashion. The cell cultures can be followed even in long-term experiments without any manual assistance or opening of the incubator Besides reading TER values, this approach also returns the electrical capacitance of the cell layers, which is indicative of the expression of microvilli and other membrane extrusions. The device is based on reading the frequencydependent impedance of the cell layer, followed by equivalent circuit modeling to extract the cell-related parameters. It is compatible with several multi-well formats (up to 96 wells) and controlled by custom-designed software that reads, analyzes, and presents the data.  相似文献   
58.
Mapping of the Physcomitrella patens proteome   总被引:2,自引:0,他引:2  
The moss Physcomitrella patens is unique among land plants due to the high rate of homologous recombination in its nuclear DNA. The feasibility of gene targeting makes Physcomitrella an unrivalled model organism in the field of plant functional genomics. To further extend the potentialities of this seed-less plant we aimed at exploring the P. patens proteome. Experimental conditions had to be adopted to meet the special requirements connected to the investigations of this moss. Here we describe the identification of 306 proteins from the protonema of Physcomitrella. Proteins were separated by two dimensional electrophoresis, excised form the gel and analysed by means of mass spectrometry. This reference map will lay the basis for further profound studies in the field of Physcomitrella proteomics.  相似文献   
59.
A series of benzoylpyrimidines derived from the anilinepyrimidine CRF(1) antagonists were synthesized. Several synthetic routes were developed to explore the SAR of this series of compounds. Compounds such as 8d (K(i) = 15 nM) exhibited high binding affinities at the human CRF(1) receptor.  相似文献   
60.
Molecular mechanisms of mammalian ribosome biogenesis remain largely unexplored. Here we develop a series of transposon-derived dominant mutants of Pes1, the mouse homolog of the zebrafish Pescadillo and yeast Nop7p implicated in ribosome biogenesis and cell proliferation control. Six Pes1 mutants selected by their ability to reversibly arrest the cell cycle also impair maturation of the 28S and 5.8S rRNAs in mouse cells. We show that Pes1 physically interacts with the nucleolar protein Bop1, and both proteins direct common pre-rRNA processing steps. Interaction with Bop1 is essential for the efficient incorporation of Pes1 into nucleolar preribosomal complexes. Pes1 mutants defective for the interaction with Bop1 lose the ability to affect rRNA maturation and the cell cycle. These data show that coordinated action of Pes1 and Bop1 is necessary for the biogenesis of 60S ribosomal subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号