首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   24篇
  2023年   2篇
  2022年   9篇
  2021年   8篇
  2020年   1篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   12篇
  2015年   18篇
  2014年   18篇
  2013年   27篇
  2012年   20篇
  2011年   31篇
  2010年   14篇
  2009年   21篇
  2008年   27篇
  2007年   30篇
  2006年   18篇
  2005年   8篇
  2004年   16篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有353条查询结果,搜索用时 406 毫秒
261.

Background

Sphingolipids constitute bioactive molecules with functional implications in liver homeostasis. Particularly, ablation of very long chain ceramides in a knockout mouse model has been shown to cause a severe hepatopathy.

Methods

We aimed to evaluate the serum sphingolipid profile of 244 patients with cirrhosis prospectively followed for a median period of 228±217 days via mass spectrometry.

Results

We thereby observed a significant decrease of long and very long chain ceramides, particularly of C24ceramide, in patients with increasing severity of cirrhosis (p<0.001). Additionally, hydropic decompensation, defined by clinical presentation of ascites formation, was significantly correlated to low C24ceramide levels (p<0.001) while a significant association to hepatic decompensation and poor overall survival was observed for low serum concentrations of C24ceramide (p<0.001) as well. Multivariate analysis further identified low serum C24ceramide to be independently associated to overall survival (standard beta = -0.001, p = 0.022).

Conclusions

In our current analysis serum levels of very long chain ceramides show a significant reciprocal correlation to disease severity and hepatic decompensation and are independently associated with overall survival in patients with cirrhosis. Serum sphingolipid metabolites and particularly C24ceramide may constitute novel molecular targets of disease severity, hepatic decompensation and overall prognosis in cirrhosis and should be further evaluated in basic research studies.  相似文献   
262.
Chios mastic oil (CMO), the essential oil derived from Pistacia lentiscus (L.) var. chia (Duham), has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. In the present study, the potential genotoxic activity of CMO as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC) were evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN) assay and the in vivo Somatic Mutation And Recombination Test (SMART). In the in vitro experiments, lymphocytes were treated with 0.01, 0.05 and 0.10% (v/v) of CMO with or without 0.05 μg/ml MMC, while in the in vivo assay Drosophila larvae were fed with 0.05, 0.10, 0.50 and 1.00% (v/v) of CMO with or without 2.50 μg/ml MMC. CMO did not significantly increase the frequency of micronuclei (MN) or total wing spots, indicating lack of mutagenic or recombinogenic activity. However, the in vitro analysis suggested cytotoxic activity of CMO. The simultaneous administration of MMC with CMO did not alter considerably the frequencies of MMC-induced MN and wing spots showing that CMO doesn’t exert antigenotoxic or antirecombinogenic action. Therefore, CMO could be considered as a safe product in terms of genotoxic potential. Even though it could not afford any protection against DNA damage, at least under our experimental conditions, its cytotoxic potential could be of interest.  相似文献   
263.
264.
Background/AimMultiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. Effector T helper cells, mainly Th1 and Th17, cytotoxic T-cells, B-cells, macrophages, microglia, and the cytokines they secrete, are implicated in the initiation and maintenance of a deregulated immune response to myelin antigens and the ensuing immune-mediated demyelination. In this study, we investigated whether signature cytokines exist in MS patients at presentation to gain an insight into the underlying immunopathogenic processes at the early stage of the disease.MethodsWe collected serum and cerebrospinal fluid (CSF) samples from 123 patients at presentation, eventually diagnosed with MS or non-inflammatory (NIND) or inflammatory neurological diseases (IND) or symptomatic controls (SC). The levels of cytokines IFN-γ, TNF-α, TGF-β1, IL-2, IL-4, IL-6, IL-10 and IL-17 were measured, and cytokine ratios, such as Th1/Th2, Th1/Th17, and Type-1/Type-2, were calculated. All parameters were tested for their correlations with the intrathecal IgG synthesis.ResultsCytokine levels in CSF were lower than in serum in all the patients, with the exception of IL-6. Serum or CSF cytokine levels of MS patients did not differ significantly from NIND or SC, with the exception of serum IFN-γ and TNF-α that were significantly higher in NIND. IND patients presented with the highest levels of all cytokines in serum and CSF, with the exception of serum IL-10 and CSF IL-17. MS patients had a significantly lower serum Th1/Th2 ratio compared to the NIND and IND groups, and significantly lower serum Type-1/Type-2, IFN-γ/IL-10 and CSF Th1/Th17 ratios compared to IND patients. MS patients had a significantly higher CSF IL-17/IL-10 ratio compared to IND patients. The IgG index was higher in MS patients compared to the control groups; the differences reached statistical significance between the MS and the NIND and SC groups. Reiber-Felgenhauer analysis of the QIgG and QAlb indices revealed higher intrathecal IgG synthesis in MS patients, and higher blood-CSF barrier dysfunction in IND patients. The IgG index correlated with CSF IL-4 in MS patients only.ConclusionsWe found no signature cytokines or profiles thereof in MS patients at presentation. Only IND patients presented with a clear Th1 cytokine polarization in serum and CSF. The parameters that distinguished MS patients from patients with other neurological disorders were IgG intrathecal synthesis, the IgG index and its correlation with CSF IL-4 levels.  相似文献   
265.
There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era.  相似文献   
266.
267.
268.
It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r2 = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate supply in the pistil.  相似文献   
269.
270.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号