全文获取类型
收费全文 | 248篇 |
免费 | 27篇 |
专业分类
275篇 |
出版年
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 11篇 |
2014年 | 6篇 |
2013年 | 16篇 |
2012年 | 12篇 |
2011年 | 9篇 |
2010年 | 7篇 |
2009年 | 12篇 |
2008年 | 19篇 |
2007年 | 9篇 |
2006年 | 10篇 |
2005年 | 12篇 |
2004年 | 6篇 |
2003年 | 9篇 |
2002年 | 13篇 |
2001年 | 8篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 8篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 7篇 |
1993年 | 4篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 9篇 |
1989年 | 4篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有275条查询结果,搜索用时 15 毫秒
61.
62.
63.
Kloosterman H Vrijbloed JW Dijkhuizen L 《The Journal of biological chemistry》2002,277(38):34785-34792
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation. 相似文献
64.
Wilbrink MH Petrusma M Dijkhuizen L van der Geize R 《Applied and environmental microbiology》2011,77(13):4455-4464
The actinobacterial cholesterol catabolic gene cluster contains a subset of genes that encode β-oxidation enzymes with a putative role in sterol side chain degradation. We investigated the physiological roles of several genes, i.e., fadD17, fadD19, fadE26, fadE27, and ro04690DSM43269, by gene inactivation studies in mutant strain RG32 of Rhodococcus rhodochrous DSM43269. Mutant strain RG32 is devoid of 3-ketosteroid 9α-hydroxylase (KSH) activity and was constructed following the identification, cloning, and sequential inactivation of five kshA gene homologs in strain DSM43269. We show that mutant strain RG32 is fully blocked in steroid ring degradation but capable of selective sterol side chain degradation. Except for RG32ΔfadD19, none of the mutants constructed in RG32 revealed an aberrant phenotype on sterol side chain degradation compared to parent strain RG32. Deletion of fadD19 in strain RG32 completely blocked side chain degradation of C-24 branched sterols but interestingly not that of cholesterol. The additional inactivation of fadD17 in mutant RG32ΔfadD19 also did not affect cholesterol side chain degradation. Heterologously expressed FadD19DSM43269 nevertheless was active toward steroid-C26-oic acid substrates. Our data identified FadD19 as a steroid-coenzyme A (CoA) ligase with an essential in vivo role in the degradation of the side chains of C-24 branched-chain sterols. This paper reports the identification and characterization of a CoA ligase with an in vivo role in sterol side chain degradation. The high similarity (67%) between the FadD19(DSM43269) and FadD19H37Rv enzymes further suggests that FadD19H37Rv has an in vivo role in sterol metabolism of Mycobacterium tuberculosis H37Rv. 相似文献
65.
Membrane vesicles isolated from oxalategrown cells of Pseudomonas oxalaticus accumulated oxalate by an inducible transport system in unmodified form against a concentration gradient. This accumulation was dependent on the presence of a suitable electron donor system such as ascorbate-phenazinemethosulphate. In the presence of this energy source, steady state levels of accumulation of oxalate were 10–20-fold higher than in its absence. The oxalate transport system involved showed a high affinity for oxalate (K
m
=11 M) and was highly specific. Oxalate transport was not affected by the presence of other dicarboxylic acids, such as malate, succinate and fumarate and only partly inhibited by acetate. The energy requirement for oxalate transport is discussed and it is concluded that this requirement is most likely equivalent to 1 mole of ATP per mole of oxalate.Abbreviation PMS
phenazinemethosulphate 相似文献
66.
Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical properties are produced, which have found diverse (potential) commercial applications, e.g. in food, health and as biomaterials. Originally, the GH70 family was established only for glucansucrase enzymes of lactic acid bacteria that catalyze the synthesis of α-glucan polymers from sucrose. In recent years, we have identified 3 novel subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD), inactive on sucrose but converting starch/maltodextrin substrates into novel α-glucans. These novel starch-acting enzymes considerably enlarge the panel of α-glucans that can be produced. They also represent very interesting evolutionary intermediates between sucrose-acting GH70 glucansucrases and starch-acting GH13 α-amylases. Here we provide an overview of the repertoire of GH70 enzymes currently available with focus on these novel starch-acting GH70 enzymes and their biotechnological potential. Moreover, we discuss key developments in the understanding of structure-function relationships of GH70 enzymes in the light of available three-dimensional structures, and the protein engineering strategies that were recently applied to expand their natural product specificities. 相似文献
67.
68.
Kralj S Stripling E Sanders P van Geel-Schutten GH Dijkhuizen L 《Applied and environmental microbiology》2005,71(7):3942-3950
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the alpha-(1-->4) glucosidic type ( approximately 70%). This reuteran also contains alpha-(1-->6)- linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing alpha-(1-->4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of alpha-(1-->4) linkages reported to date. 相似文献
69.
Markus Böger Johan Hekelaar Sander S. van Leeuwen Lubbert Dijkhuizen Alicia Lammerts van Bueren 《Journal of structural biology》2019,205(1):1-10
Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOS?≥?DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics. 相似文献
70.