首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1974年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
11.
Antisera (a/s) raised to individual α- and β-subunits of human chorionic gonadotropin (hCG) have been characterized for specificity using immunoaffinity procedures and used to study the disposition of the two subunits when intact hCG is complexed with luteinizing hormone (LH) receptor of the Leydig cells. Three kinds of experiments were done. (a) The ability of the preformed hormone-antibody (H-Ab) complex to bind to receptor and stimulate a response; (b) the ability of the a/s to dissociate hCG from its complex with the receptor and thereby terminate response; and (c) the ability of the premixed antibody and receptor to compete for binding of labeled hCG. Although the subunit specific a/s used here were equipotent in binding hCG (capacity to bind and Ka being very similar), their behavior once the receptor preparation or Leydig cell is introduced into the system was drastically different. The β-subunit antibody relative to the α-subunit antibody, appeared to be poorly effective in preventing hCG from either binding to the receptor or inhibiting the continuation of response. The results suggest that hCG upon interaction with the receptor loses the determinants specific to the β-region more rapidly compared to those specific to the α-region suggesting thereby that the initial interaction of hCG with the receptor should be occurring through sites in the β-subunit. Although the α-subunit portion of the hCG molecule is available for binding to the antibody for a relatively longer time, the biological response of the cell seems very sensitive to such binding with the antibody as it invariably results in loss of response. In the Leydig cell system, the ability of the a/s to bind hCG that is already complexed to the receptor appears to be dependent upon the time of addition of the antibody to the incubation medium. The antisera were totally ineffective in inhibiting steroidogenic response to hCG if added 60 min after addition of hCG. This would suggest that the hormone-receptor complex once formed perhaps continues to change its orientation with the result that with time relatively less and less of antigenic determinants become available for antibody binding.  相似文献   
12.
13.
The exoloops of glycoprotein hormone receptors (GpHRs) transduce the signal generated by the ligand-ectodomain interactions to the transmembrane helices either through direct hormonal contact and/or by modulating the interdomain interactions between the hinge region (HinR) and the transmembrane domain (TMD). The ligand-induced conformational alterations in the HinRs and the interhelical loops of luteinizing hormone receptor/follicle stimulating hormone receptor/thyroid stimulating hormone receptor were mapped using exoloop-specific antibodies generated against a mini-TMD protein designed to mimic the native exoloop conformations that were created by joining the thyroid stimulating hormone receptor exoloops constrained through helical tethers and library-derived linkers. The antibody against the mini-TMD specifically recognized all three GpHRs and inhibited the basal and hormone-stimulated cAMP production without affecting hormone binding. Interestingly, binding of the antibody to all three receptors was abolished by prior incubation of the receptors with the respective hormones, suggesting that the exoloops are buried in the hormone-receptor complexes. The antibody also suppressed the high basal activities of gain-of-function mutations in the HinRs, exoloops, and TMDs such as those involved in precocious puberty and thyroid toxic adenomas. Using the antibody and point/deletion/chimeric receptor mutants, we demonstrate that changes in the HinR-exoloop interactions play an important role in receptor activation. Computational analysis suggests that the mini-TMD antibodies act by conformationally locking the transmembrane helices by means of restraining the exoloops and the juxta-membrane regions. Using GpHRs as a model, we describe a novel computational approach of generating soluble TMD mimics that can be used to explain the role of exoloops during receptor activation and their interplay with TMDs.  相似文献   
14.
OBJECTIVE: To standardize an inexpensive and rapid Papanicolaou staining technique with limited ethanol usage. STUDY DESIGN: Smears from 200 patients were collected (2 per patient) and fixed in methanol. Half were subjected to conventional Papanicolaou and half to stain ing with rapid, economical, acetic acid Papanicolaou (REAP) stain. In REAP, pre-OG6 and post-OG6 and post-EA36 ethanol baths were replaced by 1% acetic acid and Scott's tap water with tap water. Hematoxylin was preheated to 60 degrees C. Final dehydration was with methanol. REAP smears were compared with Papanicolaou smears for optimal cytoplasmic and nuclear staining, stain preservation, cost and turnaround time. RESULTS: With the REAP method, cytoplasmic and nuclear staining was optimal in 181 and 192 cases, respectively. The staining time was considerably reduced, to 3 minutes, and the cost per smear was reduced to one fourth. The staining quality remained good in all the smears for > 2 years. CONCLUSION: REAP is a rapid, cost-effective alternative to Papanicolaou stain. Though low stain penetration in large cell clusters is a limitation, final interpretation was not compromised.  相似文献   
15.
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.  相似文献   
16.

Background  

The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter.  相似文献   
17.

Background

Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14 knockout studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling, in a tissue specific manner. Retinal cells are post-mitotic tissue, and insulin receptor (IR) activation is essential for retinal neuron survival. Retinal cells express protein tyrosine phosphatase-1B (PTP1B), which dephosphorylates IR and Grb14, a pseudosubstrate inhibitor of IR. This project asks the following major question: in retinal neurons, how does the IR overcome inactivation by PTP1B and Grb14?

Results

Our previous studies suggest that ablation of Grb14 results in decreased IR activation, due to increased PTP1B activity. Our research propounds that phosphorylation in the BPS region of Grb14 inhibits PTP1B activity, thereby promoting IR activation. We propose a model in which phosphorylation of the BPS region of Grb14 is the key element in promoting IR activation, and failure to undergo phosphorylation on Grb14 leads to both PTP1B and Grb14 exerting their negative roles in IR. Consistent with this hypothesis, we found decreased phosphorylation of Grb14 in diabetic type 1 Ins2Akita mouse retinas. Decreased retinal IR activation has previously been reported in this mouse line.

Conclusions

Our results suggest that phosphorylation status of the BPS region of Grb14 determines the positive or negative role it will play in IR signaling.
  相似文献   
18.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   
19.
Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation pattern is a prerequisite. To this end N-glycans were released with peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via normal phase (Lichrosorb-NH2) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz 1H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man8GlcNAc2 to Man11GlcNAc2 including molecular isomers, could be established, and structures up to Man15GlcNAc2 were indicated. Phosphate-containing oligosaccharides ranged from Man9 PGlcNAc2 to Man13 PGlcNAc2. Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide structures are similar, but their relative amounts varied with the culturing media.  相似文献   
20.
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号