首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3846篇
  免费   244篇
  国内免费   1篇
  2021年   34篇
  2018年   31篇
  2017年   39篇
  2016年   48篇
  2015年   96篇
  2014年   92篇
  2013年   138篇
  2012年   138篇
  2011年   148篇
  2010年   76篇
  2009年   107篇
  2008年   146篇
  2007年   133篇
  2006年   121篇
  2005年   142篇
  2004年   104篇
  2003年   121篇
  2002年   106篇
  2001年   86篇
  2000年   74篇
  1999年   54篇
  1998年   49篇
  1997年   43篇
  1996年   44篇
  1995年   49篇
  1994年   31篇
  1992年   44篇
  1991年   38篇
  1990年   37篇
  1989年   48篇
  1988年   49篇
  1987年   59篇
  1986年   44篇
  1985年   50篇
  1984年   37篇
  1983年   33篇
  1982年   43篇
  1981年   39篇
  1980年   33篇
  1979年   40篇
  1978年   35篇
  1977年   30篇
  1975年   30篇
  1974年   30篇
  1973年   32篇
  1972年   40篇
  1970年   34篇
  1968年   36篇
  1967年   34篇
  1961年   27篇
排序方式: 共有4091条查询结果,搜索用时 29 毫秒
181.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   
182.
The master circadian pacemaker emits signals that trigger organ-specific oscillators and, therefore, constitutes a basic biological process that enables organisms to anticipate daily environmental changes by adjusting behavior, physiology, and gene regulation. Although circadian rhythms are well characterized on a physiological level, little is known about circadian modulations of higher cognitive functions. Thus, we investigated circadian repercussions on language performance at the level of minimal syntactic processing by means of German noun phrases in ten young healthy men under the unmasking conditions of a 40 h constant-routine protocol. Language performance for both congruent and incongruent noun phrases displayed a clear diurnal rhythm with a peak performance decrement during the biological night. The nadirs, however, differed such that worst syntactic processing of incongruent noun phrases occurred 3 h earlier (07:00 h) than that of congruent noun phrases (10:00 h). Our results indicate that language performance displays an internally generated circadian rhythmicity with optimal time for parsing language between 3 to 6 h after the habitual wake time, which usually corresponds to 10:00–13:00 h. These results may have important ramifications for establishing optimal times for shiftwork changes or testing linguistically impaired people.  相似文献   
183.
Living in the tidal zones of the sea requires synchronization with the dominant environmental influences of tidal, solar, and lunar periodicity. Endogenous clocks anticipate those geoclimatic changes and control the respective rhythms of vital functions. But the underlying mechanisms are only partly understood. While the circadian clocks in animals are investigated employing neurobiological, molecular, and genetic approaches, clocks with a lunar periodicity have been studied with reference to development and behavior only. Sites of their pacemakers, zeitgeber receptors, and coupled endocrine components are unknown. Here, a lunar‐rhythmic change of shielding pigment transparency in the larval ocelli of the intertidal midge Clunio marinus is demonstrated for the first time as a possible access to the neurobiology of lunar timing mechanisms. We studied third instar larvae (Vigo strain) throughout the lunar cycle by light‐ and electron-microscopy as well as by x‐ray fluorescence analysis for the identification of the pigment. Moonlight detection is a prerequisite for photic synchronization of the lunar clock. The larval ocelli of Clunio putatively may function as moonlight receptors and are also controlled by the circalunar clock itself, hence being primary candidates for tracing input and output pathways of the lunar pacemaker. Additionally, the demonstration of a reversible optical change of shielding pigment transparency in Clunio is a novel finding, not reported so far in any other animal species, and reveals a mechanism to enhance photosensitivity under the condition of very dim light. It represents a remarkable change of a sense organ from an imaging device to a radiometer. Its restriction to the developmental stage susceptible to lunar timing elucidates a unique sensory strategy evolved at the level of sensory input. It also raises basic questions about the biochemistry of optically active pigments, like melanin, and their intracellular control.  相似文献   
184.
185.
186.
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.  相似文献   
187.
188.
A series of eight watersheds on the Pacific coast of Panama where conversion of mature lowland wet forest to pastures by artisanal burning provided watershed-scale experimental units with a wide range of forest cover (23, 29, 47, 56, 66, 73, 73, 91, and 92 %). We used these watersheds as a landscape-scale experiment to assess effects of degree of deforestation on within-watershed retention and hydrological export of atmospheric inputs of nutrients. Retention was estimated by comparing rainfall nutrient concentrations (volume-weighted to allow for evapotranspiration) to concentrations in freshwater reaches of receiving streams. Retention of rain-derived nutrients in these Panama watersheds averaged 77, 85, 80, and 62 % for nitrate, ammonium, dissolved organic N, and phosphate, respectively. Retention of rain-derived inorganic nitrogen, however, depended on watershed cover: retention of nitrate and ammonium in pasture-dominated watersheds was 95 and 98 %, while fully forested watersheds retained 65 and 80 % of atmospheric nitrate and ammonium inputs. Watershed forest cover did not affect retention of dissolved organic nitrogen and phosphate. Exports from more forested watersheds yielded DIN/P near 16, while pasture-dominated watersheds exported N/P near 2. The differences in magnitude of exports and ratios suggest that deforestation in these Panamanian forests results in exports that affect growth of plants and algae in the receiving stream and estuarine ecosystems. Watershed retention of dissolved inorganic nitrogen calculated from wet plus dry atmospheric deposition varied from 90 % in pasture- to 65 % in forest-dominated watersheds, respectively. Discharges of DIN to receiving waters from the watersheds therefore rose from 10 % of atmospheric inputs for pasture-dominated watersheds, to about 35 % of atmospheric inputs for fully forested watersheds. These results from watersheds with no agriculture or urbanization, but different conversion of forest to pasture by burning, show significant, deforestation-dependent retention within tropical watersheds, but also ecologically significant, and deforestation-dependent, exports that are biologically significant because of the paucity of nutrients in receiving tropical stream and coastal waters.  相似文献   
189.
Due to increasing energy demand and limited fossil fuels, renewable energy sources have gained in importance. Particulate matter (PM) in general, but also PM from the combustion of wood is known to exert adverse health effects in human. These are often related to specific toxic compounds adsorbed to the PM surface, such as polycyclic aromatic hydrocarbons (PAH), of which some are known human carcinogens. This study focused on the bioavailability of PAHs and on the tumor initiation potential of wood combustion PM, using the PAH CALUX® reporter gene assay and the BALB/c 3T3 cell transformation assay, respectively. For this, both cell assays were exposed to PM and their respective organic extracts from varying degrees of combustion. The PAH CALUX® experiments demonstrated a concentration–response relationship matching the PAHs detected in the samples. Contrary to expectations, PM samples from complete (CC) and incomplete combustion (IC) provided for a stronger and weaker response, respectively, suggesting that PAH were more readily bioavailable in PM from CC. These findings were corroborated via PAH spiking experiments indicating that IC PM contains organic components that strongly adsorb PAH thereby reducing their bioavailability. The results obtained with organic extracts in the cell transformation assay presented the highest potential for carcinogenicity in samples with high PAH contents, albeit PM from CC also demonstrated a carcinogenic potential. In conclusion, the in vitro assays employed emphasize that CC produces PM with low PAH content however with a general higher bioavailability and thus with a nearly similar carcinogenic potential than IC PM.  相似文献   
190.
The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and 13C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号