首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2176篇
  免费   202篇
  国内免费   3篇
  2381篇
  2018年   21篇
  2017年   29篇
  2016年   36篇
  2015年   61篇
  2014年   63篇
  2013年   97篇
  2012年   98篇
  2011年   100篇
  2010年   57篇
  2009年   80篇
  2008年   108篇
  2007年   93篇
  2006年   84篇
  2005年   100篇
  2004年   83篇
  2003年   86篇
  2002年   88篇
  2001年   63篇
  2000年   54篇
  1999年   45篇
  1998年   40篇
  1997年   26篇
  1996年   25篇
  1995年   29篇
  1994年   23篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   21篇
  1989年   37篇
  1988年   32篇
  1987年   34篇
  1986年   23篇
  1985年   26篇
  1983年   29篇
  1982年   19篇
  1981年   24篇
  1980年   16篇
  1979年   24篇
  1978年   18篇
  1977年   20篇
  1976年   20篇
  1975年   27篇
  1974年   25篇
  1973年   20篇
  1972年   22篇
  1971年   20篇
  1969年   16篇
  1968年   16篇
  1967年   24篇
排序方式: 共有2381条查询结果,搜索用时 0 毫秒
121.
Signalling through the chemokine stromal derived factor (SDF)-1alpha and its receptor CXCR4 has been recognized as a key event in the migratory response of hematopoietic stem and progenitor cells (HPC). Small GTPases of the Rho/Rac family might be involved in SDF-1alpha signalling at several different levels. In the present study we report that two toxins from Clostridium species which inhibit the small GTPase Rho suppressed SDF-1alpha-induced generation of intracellular calcium transients in HPC. Chelation of intracellular Ca(2+) with BAPTA or depletion of intracellular Ca(2+) stores with thapsigargin demonstrated that calcium transients are essential for SDF-1alpha-induced chemotactic migration of HPC. Furthermore, transplantation of HPC pretreated with Ca(2+) flux inhibitors into mice revealed a suppression of HPC homing to the bone marrow and increased levels of cells remaining in the bloodstream or circulating to the spleen. Our data indicate that the small GTPase Rho is required for the induction of Ca(2+) transients in HPC, which in turn are necessary for the coordinated migratory response of HPC both in vitro and in vivo.  相似文献   
122.
Analyzing the chemosensory organs of the moth Heliothis virescens, three proteins belonging to the family of insect chemosensory proteins (CSPs) have been cloned; they are called HvirCSP1, HvirCSP2 and HvirCSP3. The HvirCSPs show about 50% identity between each other and 30–76% identity to CSPs from other species. Overall, they are rather hydrophilic proteins but include a conserved hydrophobic motif. Tissue distribution and temporal expression pattern during the last pupal stages were assessed by Northern blots. HvirCSP mRNAs were detected in various parts of the adult body with a particular high expression level in legs. The expression of HvirCSP1 in legs started early during adult development, in parallel with the appearance of the cuticle. HvirCSP1 mRNA was detectable five days before eclosion (day E-5), increased dramatically on day E-3 and remained at high level into adult life. The tissue distribution and the time course of appearance of HvirCSPs are in agreement with a possible role in contact chemosensation.  相似文献   
123.
Analysis of sequences from a 3.5-kb region of the nuclear ribosomal 28S DNA gene spanning divergent domains D2-D10 supports the hypothesis, based on fossil, biogeographic, and behavioral evidence, that treehoppers (Aetalionidae and Membracidae) are derived from leafhoppers (Cicadellidae). Maximum-parsimony analysis indicated that treehoppers are the sister group of a lineage comprising the currently recognized cicadellid subfamilies Agalliinae, Megophthalminae, Adelungiinae, and Ulopinae. Based on this phylogenetic estimate, the derivation of treehoppers approximately coincided with shifts in physiology and behavior, including loss of brochosome production and a reversal from active, jumping nymphs to sessile, nonjumping nymphs. Myerslopiidae, traditionally placed as a tribe of the cicadellid subfamily Ulopinae, represented a basal lineage distinct from other extant membracoids. The analysis recovered a large leafhopper lineage comprising a polyphyletic Deltocephalinae (sensu stricto) and its apparent derivatives Koebeliinae, Eupelicinae (polyphyletic), Selenocephalinae, and Penthimiinae. Clades comprising Macropsinae, Neocoelidiinae, Scarinae, Iassinae, Coelidiinae, Eurymelinae + Idiocerinae, Evacanthini + Pagaroniini, Aphrodinae + Ledrinae (in part), Stenocotini + Tartessinae, and Cicadellini + Proconiini were also recovered with moderate to high branch support. Cicadellinae (sensu lato), Ledrinae, Typhlocybinae, and Xestocephalinae were consistently polyphyletic on the most-parsimonious topologies, but constraining these groups to be monophyletic did not significantly increase the length of the cladograms. Relationships among the major lineages received low branch support, suggesting that more data are needed to provide a robust phylogenetic estimate.  相似文献   
124.
125.
OBJECTIVE: To investigate the diagnostic accuracy and current role of intraoperative cytologic smears of central nervous system tumors. STUDY DESIGN: Retrospective analysis of 4,172 patients operated on during 1985-1999, with 3,541 intraoperative smears performed during open procedures and 631 during stereotactic biopsies. RESULTS: Complete correlation with the final diagnosis was achieved in a mean of 89.8% (range, 83-93.7% per year). Diagnostic accuracy increased to 95% on average (range, 91.5-96.7% per year) when cases of partial correlation, mainly due to grading deviations, were included. The most accurate intraoperative diagnoses were obtained in cases of meningioma (97.9%), metastasis (96.3%) and glioblastoma (95.7%). A significant reduction in diagnostic accuracy was observed in cases of oligodendroglioma (80.9%) and ependymoma (77.7%). Besides diagnosis and grading, smear cytology provided resection guidance in cases of well-delineated tumors. CONCLUSION: Intraoperative smears in neurosurgery are easy to obtain and inexpensive and have high diagnostic accuracy. In addition to stereotactic biopsy procedures, intraoperative smears permit reliable intraoperative guidance during lesion targeting and resection.  相似文献   
126.
127.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   
128.
Shoots of the halophyte Salicornia bigelovii are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. In glycophytes, sensitivity to salt has been associated with an inability to remove sodium ions effectively from the cytoplasm in order to protect salt-sensitive metabolic processes. Therefore, in Salicornia bigelovii efficient vacuolar sequestration of sodium may be part of the mechanism underlying salt tolerance. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole via a Na(+)/H(+) exchanger. In current studies, increased vacuolar pyrophosphatase activity (hydrolysis of inorganic pyrophosphate and proton translocation) and protein accumulation were observed in Salicornia bigelovii grown in high concentrations of NaCl. Based on sodium-induced dissipation of a pyrophosphate-dependent pH gradient in vacuolar membrane vesicles, a Na(+)/H(+) exchange activity was identified and characterized. This activity is sodium concentration-dependent, specific for sodium and lithium, sensitive to methyl-isobutyl amiloride, and independent of an electrical potential. Vacuolar Na(+)/H(+) exchange activity varied as a function of plant growth in salt. The affinity of the transporter for Na(+) is almost three times higher in plants grown in high levels of salt (K(m)=3.8 and 11.5 mM for plants grown in high and low salt, respectively) suggesting a role for exchange activity in the salt adaptation of Salicornia bigelovii.  相似文献   
129.
The gl8 gene is required for the normal accumulation of cuticular waxes on maize (Zea mays) seedling leaves. The predicted GL8 protein exhibits significant sequence similarity to a class of enzymes that catalyze the reduction of a ketone group to a hydroxyl group. Polyclonal antibodies raised against the recombinant Escherichia coli-expressed GL8 protein were used to investigate the function of this protein in planta. Subcellular fractionation experiments indicate that the GL8 protein is associated with the endoplasmic reticulum membranes. Furthermore, polyclonal antibodies raised against the partially purified leek (Allium porrum) microsomal acyl-coenzyme A (CoA) elongase can react with the E. coli-expressed GL8 protein. In addition, anti-GL8 immunoglobulin G inhibited the in vitro elongation of stearoyl-CoA by leek and maize microsomal acyl-CoA elongase. In combination, these findings indicate that the GL8 protein is a component of the acyl-CoA elongase. In addition, the finding that anti-GL8 immunoglobulin G did not significantly inhibit the 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA dehydrase, and (E) 2,3-enoyl-CoA reductase partial reactions of leek or maize acyl-CoA elongase lends further support to our previous hypothesis that the GL8 protein functions as a beta-ketoacyl reductase during the elongation of very long-chain fatty acids required for the production of cuticular waxes.  相似文献   
130.
The pharmacology of G protein-coupled receptors is widely accepted to depend on the G protein subunit to which the agonist-stimulated receptor couples. In order to investigate whether CB(1) agonist-mediated signal transduction via an engineered G(alpha 16) system is different than that of the G(i/o) coupling normally preferred by the CB(1) receptor, we transfected the human recombinant CB(1) receptor (hCB(1)) or a fusion protein comprising the hCB(1) receptor and G(alpha 16) (hCB(1)-G(alpha 16)) into HEK293 cells. From competition binding studies, the rank order of ligand affinities at the hCB(1)-G(alpha 16) fusion protein was found to be similar to that for hCB(1): HU 210 > CP 55,940 > or = SR 141716A > WIN 55212-2 > anandamide > JWH 015. Agonists increased [(35)S]GTP gamma S binding or inhibited forskolin-stimulated cAMP, presumably by coupling to G(i/o), in cells expressing hCB(1) but not hCB(1)-G(alpha 16). However, an analogous rank order of potencies was observed for these agonists in their ability to evoke increases in intracellular calcium concentration in cells expressing hCB(1)-G(alpha 16) but not hCB(1). These data demonstrate that ligand affinities for the hCB(1) receptor are not affected by fusion to the G(alpha 16) subunit. Furthermore, there is essentially no difference in the function of the hCB(1) receptor when coupled to G(i/o) or G (alpha 16).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号