首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1780篇
  免费   172篇
  国内免费   1篇
  2023年   9篇
  2022年   11篇
  2021年   26篇
  2020年   17篇
  2019年   20篇
  2018年   23篇
  2017年   33篇
  2016年   44篇
  2015年   76篇
  2014年   65篇
  2013年   87篇
  2012年   116篇
  2011年   107篇
  2010年   68篇
  2009年   62篇
  2008年   92篇
  2007年   98篇
  2006年   91篇
  2005年   100篇
  2004年   88篇
  2003年   77篇
  2002年   117篇
  2001年   26篇
  2000年   19篇
  1999年   26篇
  1998年   28篇
  1997年   19篇
  1996年   9篇
  1995年   21篇
  1994年   15篇
  1993年   14篇
  1992年   29篇
  1991年   16篇
  1990年   22篇
  1989年   15篇
  1988年   19篇
  1987年   11篇
  1986年   16篇
  1985年   17篇
  1984年   22篇
  1983年   18篇
  1982年   18篇
  1981年   17篇
  1980年   12篇
  1979年   14篇
  1978年   16篇
  1976年   9篇
  1975年   11篇
  1974年   12篇
  1973年   13篇
排序方式: 共有1953条查询结果,搜索用时 187 毫秒
121.
Tissue transglutaminase (TG2) can modify proteins by transamidation or deamidation of specific glutamine residues. TG2 has a major role in the pathogenesis of celiac disease as it is both the target of disease-specific autoantibodies and generates deamidated gliadin peptides that are recognized by CD4(+), DQ2-restricted T cells from the celiac lesions. Capillary electrophoresis with fluorescence-labeled gliadin peptides was used to separate and quantify deamidated and transamidated products. In a competition assay, the affinity of TG2 to a set of overlapping gamma-gliadin peptides was measured and compared with their recognition by celiac lesion T cells. Peptides differed considerably in their competition efficiency. Those peptides recognized by intestinal T cell lines showed marked competition indicating them as excellent substrates for TG2. The enzyme fine specificity of TG2 was characterized by synthetic peptide libraries and mass spectrometry. Residues in positions -1, +1, +2, and +3 relative to the targeted glutamine residue influenced the enzyme activity, and proline in position +2 had a particularly positive effect. The characterized sequence specificity of TG2 explained the variation between peptides as TG2 substrates indicating that the enzyme is involved in the selection of gluten T cell epitopes. The enzyme is mainly localized extracellularly in the small intestine where primary amines as substrates for the competing transamidation reaction are present. The deamidation could possibly take place in this compartment as an excess of primary amines did not completely inhibit deamidation of gluten peptides at pH 7.3. However, lowering of the pH decreased the reaction rate of the TG2-catalyzed transamidation, whereas the rate of the deamidation reaction was considerably increased. This suggests that the deamidation of gluten peptides by TG2 more likely takes place in slightly acidic environments.  相似文献   
122.
Pleomorphic Trypanosoma brucei strains are characterized by their ability to differentiate from replicating long slender forms into non-dividing short stumpy forms in the mammalian host. The differentiation process can be efficiently induced in vitro by treatment with the membrane-permeable cAMP derivative 8-(4-chlorophenylthio)-cAMP (pCPTcAMP). In contrast, monomorphic T. brucei strains do not differentiate to stumpy forms in the host. Here, we show that exposure of monomorphic, culture-adapted T. brucei bloodstream forms to pCPTcAMP allowed their subsequent differentiation into short stumpy forms. The stumpy nature of pCPTcAMP-treated parasites was confirmed by (1) morphological change, (2) inhibition of growth and DNA synthesis, (3) cell cycle arrest in the G(1)/G(0) phase, (4) expression of NADH diaphorase activity and dihydrolipoamide dehydrogenase, (5) disappearance of the small subunit of ribonucleotide reductase, (6) up-regulation of the major lysosomal membrane protein, and (7) efficient transformation into replicating procyclic insect forms after induction with citrate/cis-aconitate. Our results indicate that the inability of monomorphic T. brucei bloodstream forms to differentiate into short stumpy forms in the host may be due to a failure in the signalling pathway rather than in the differentiation process itself. Treatment of monomorphic bloodstream trypanosomes with pCPTcAMP could be a useful method for identifying the genes involved in the slender-to-stumpy differentiation process.  相似文献   
123.
Searching for cell surface proteins expressed at interendothelial cell contacts, we have raised monoclonal antibodies against intact mouse endothelial cells. We obtained two monoclonal antibodies, 1G8 and 4C10, that stain endothelial cell contacts and recognize a protein of 55 kDa. Purification and identification by mass spectrometry of this protein revealed that it contains two extracellular Ig domains, reminiscent of the JAM family, but a much longer 120-amino acid cytoplasmic domain. The antigen is exclusively expressed on endothelial cells of various organs as was analyzed by immunohistochemistry. Immunogold labeling of ultrathin sections of brain as well as skeletal muscle revealed that the antigen strictly colocalizes in capillaries with the tight junction markers occludin, claudin-5, and ZO-1. Upon transfection into MDCK cells, the antigen was restricted to the most apical tip of the lateral cell surface, where it colocalized with ZO-1 but not with beta-catenin. In contrast to JAM-1, however, the 1G8 antigen does not associate with the PDZ domain proteins ZO-1, AF-6, or ASIP/PAR-3, despite the presence of a PDZ-binding motif. The 1G8 antigen was not detected on peripheral blood mouse leukocytes, whereas similar to JAM-1 it was strongly expressed on platelets and megakaryocytes. The 1G8 antigen supports homophilic interactions on transfected Chinese hamster ovary cells. Based on the similarity to the JAM molecules, it is plausible that the 1G8 antigen might be involved in interendothelial cell adhesion.  相似文献   
124.
125.
The polymorphic minor histocompatibility Ag HA-1 locus encodes two peptides, HA-1(H) and HA-1(R), with a single amino acid difference. Whereas the immunogenicity of the HA-1(R) allele has not yet been shown, the nonameric HA-1(H) peptide induces HLA-A2-restricted cytotoxic T cells in vivo and in vitro. It is not known whether the mHag HA-1(H) or HA-1(R) associates with other HLA class I molecules. Therefore, the polymorphic regions of both HA-1 alleles were analyzed to identify HLA class I binding peptides that are properly processed by proteasomal degradation. Peptide binding analyses were performed for all nonameric HA-1(H/R) peptides for binding to nine HLA class I molecules with >10% prevalence in the Caucasian population and for seven nonameric/decameric HA-1(H/R) peptides predicted to bind to HLA-A3, -B14, and -B60. Only the nonameric KECVL(H)/(R)DDL and decameric KECVL(H)/(R)DDLL peptides showed strong and stable binding to HLA-B60. In vitro digestion of 29-aa-long HA-1 peptides by purified 20S proteasomes revealed proper cleavage at the COOH termini of both HLA-B60 binding HA-1(H) and HA-1(R) peptides. In subsequent analyses, dendritic cells pulsed with the nonameric HA-1(R) peptide did not induce CTLs that recognize the natural HLA-B60/HA-1(R) ligand. In contrast, dendritic cells pulsed with the nonameric HA-1(H) peptide induced IFN-gamma-secreting T cells specific for the natural HLA-B60/HA-1(H) ligand in three HLA-B60(+) HA-1(RR) individuals, demonstrating the immunogenicity of the HLA-B60/HA-1(H) ligand. In conclusion, this study shows a novel HLA-B60-restricted T cell epitope of the minor histocompatibility Ag HA-1 locus.  相似文献   
126.
127.
128.
Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteine, and L-valine into the tripeptide ACV. ACV synthetase has previously been localized to the vacuole where it is thought to utilize amino acids from the vacuolar pools. We localized ACV synthetase by subcellular fractionation and immuno-electron microscopy under conditions that prevented proteolysis and found it to co-localize with isopenicillin N synthetase in the cytosol, while acyltransferase localizes in microbodies. These data imply that the key enzymatic steps in penicillin biosynthesis are confined to only two compartments, i.e., the cytosol and microbody.  相似文献   
129.
The Arabidopsis phloem channel AKT3 is the founder of a subfamily of shaker-like plant potassium channels characterized by weak rectification, Ca(2+) block, proton inhibition, and, as shown in this study, K(+) sensitivity. In contrast to inward-rectifying, acid-activated K(+) channels of the KAT1 family, extracellular acidification decreases AKT3 currents at the macroscopic and single-channel levels. Here, we show that two distinct sites within the outer mouth of the K(+)-conducting pore provide the molecular basis for the pH sensitivity of this phloem channel. After generation of mutant channels and functional expression in Xenopus oocytes, we identified the His residue His-228, which is proximal to the K(+) selectivity filter (GYGD) and the distal Ser residue Ser-271, to be involved in proton susceptibility. Mutations of these sites, H228D and S271E, drastically reduced the H(+) and K(+) sensitivity of AKT3. Although in K(+)-free bath solutions outward K(+) currents were abolished completely in wild-type AKT3, S271E as well as the AKT3-HDSE double mutant still mediated K(+) efflux. We conclude that the pH- and K(+)-dependent properties of the AKT3 channel involve residues in the outer mouth of the pore. Both properties, H(+) and K(+) sensitivity, allow the fine-tuning of the phloem channel and thus seem to represent important elements in the control of membrane potential and sugar loading.  相似文献   
130.
Two artificial transaminases were assembled by linking a pyridoxamine derivative within an engineered fatty acid binding protein. The goal of mimicking a native transamination site by stabilizing a cationic pyridoxamine ring system was approached using two different strategies. First, the scaffold of intestinal fatty acid binding protein (IFABP) was tailored by molecular modeling and site-directed mutagenesis to position a carboxylate group close to the pyridine nitrogen of the cofactor. When these IFABP mutants (IFABP-V60C/L38K/E93E and -V60C/E51K/E93E) proved to be unstable, a second approach was explored. By N-methylation of the pyridoxamine, a cationic cofactor was created and tethered to Cys60 of IFABP-V60C/L38K and -V60C/E51K; this latter strategy had the effect of permanently installing a positive charge on the cofactor. These chemogenetic assemblies catalyze the transamination between alpha-ketoglutarate and various amino acids with enantioselectivities of up to 96% ee. The pH profile of the initial rates is bell shaped and similar to native aminotransferases. The k(cat) values and the turnover numbers for these new constructs are the highest achieved to date in our system. This success was only made possible by the unique flexibility of the underlying enzyme design concept employed, which permits full control of both the protein scaffold and the catalytically active group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号